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ABSTRACT channel to be ill-conditioned [4, 5]. The previous literatu

This paper addresses the design of low-order Kalman filtersOn the use of Kalman filters for radio channel estimation is
to estimate radio channels with Rayleigh fading. Rayleigh limited to Kalman filters of ordet or 2 since the Kalman
fading cannot be perfectly modelled with any finite order filters of higher order based on AR models using parame-
auto-regressive (AR) process. Previously, only first ard se  t€rs from the ill-conditioned calculations did not provide
ond order Kalman filters were used for channel estimation Significant improvements in estimation accuracy. This pa-
since higher order Kalman filters were found to not signif- Per presents a new method for calculating the parameters
icantly improve accuracy. This is due to mismatches in the ©f AR models of orders fron2 to 10 by developing over-
statistics of the AR models of the Kalman filters and the true detérmined equations for the AR model coefficients. The
Rayleigh fading. In this paper, the coefficients of the AR US€ of over-determined equations reduces the effect of the
models for the Kalman filter are calculated by solving for ill-conditioning problem. How these AR models are used to
the minimum square error solutions of an over-determined develop Kalman filters is presented. It is demonstrated how
linear systems. The AR models generated have statisticdhese low order Kalman filters provide accurate estimation
closely matching the Rayleigh fading process. The Kalman @nd prediction of the radio channel fading process. .
filter using these AR models can accurately estimate the ~ Section 2 presents the analytical model for the radio
Rayleigh fading process. The accuracy of the new Kalman channel measurements. Section 3 describes the radio chan-

filters is demonstrated in the tracking of simulated Rayleig Ne€l estimation procedure and methods for calculating the
fading processes of different bandwidths. parameters of the Kalman filter. Section 4 presents results

on the use of the this algorithm. Section 5 presents the con-

1 INTRODUCTION clusions of the paper and ideas for future research.

A difficulty when designing wireless communications sys- 2. SIGNAL MODEL
tems is managing the variation of the radio channel over ] ) ] .
time. Current radio communications systems use estimated©r this paper, the CDMA signalling for UMTS will be
and predictions of the radio channel state for power control US€d, which creates correlation properties in the tratschit
and data symbol decoding to mitigate the negative effects ofSignal which allow radio receivers to resolve the different
the varying radio channel. The effectiveness of these tech-radio propagation paths with delays differing by more than
niques is determined by the accuracy of the radio channel@ chip period [2]. For the rest of this paper, it will be as-
estimation system. Several types of adaptive filters haveSumed that the're are resolvable rad|q propagation paths.
been proposed for tracking of radio channels [1-3]. The spreading sequences and chip waveforms in UMTS
The advantages of Kalman filtering over other filter al- Nave been designed so that if the delays of the propaga-
gorithms is that the estimation algorithm computes the co- tion paths are estimated perfectly, the individual reaive
variance of the channel estimation error which is usefuliwhe Sequences for the branch of the receiver corresponding to
performing data symbol decoding. The Kalman filter also Propagation path is then approximately equal to
can adapt to changlng levels of measgrement noise. The rplk] = sk g, k] + m, [K] 1)
Kalman filter requires knowledge of the time evolution pisxe
for the radio channel in the form of a finite auto-regressive where the contributions of all other propagation pathsrothe
(AR) model for the radio channel. It is well known that thanp and symbols other thah are almost perfectly re-
channel fading cannot be perfectly represented by any finitemoved by the filtering and despreading proceduresnafid
order AR model. This causes the calculations of parameterss the remaining white noise process after filtering and de-
for finite order AR models which closely match the radio spreading [2]. The noise processes for different propaga-



tion paths will be independent. For the remainder of this linear equatiorg,[k] = w’ x wherew is a vector of weight
paper, it is a;sumed that the prqpagat'ion delays have beeEoefﬁcients,m _ [ép[lﬁ], 8, k), ...7gp[kM]]T, and super-
perfectly estimated and the received signal on each path Ofyeript 7 denotes matrix transposition. Since the channel
the receiver is given by (1). gain processes are zero mean wide sense stationary complex
The channel fading processggk| forp = 0,1, ..., P — Gaussian processes, the Minimum Square Error (MSE) esti-

1 are modelled as independent complex Gaussian processg§,aie ofg, [¥] given the) past channel gain measurements

with independent and identically distributed imaginargan ¢4, symbolsk,, ks, ...,k is obtained using the weight vec-
real components. If a givep,[k] has a zero mean, the 4 \hich is the solution of the Weiner-Hopf linear equation
process is a Rayleigh fading process. If a g|ggfk] ha_s Cw = p whereC = E [wa] andp = E [gp[k]m] [6].

a non-zero mean, the process is Rician fading. This pa-The entries ofC' and p can be calculated using from the
per will concentrate on channel estimation for Rayleigh fad 5 ,i0correlation of the fading process given in Section 2 and

ing, since Rayleigh fading results in worse receiver perfor 5q4ing the effect of the independent additive white Ganssia

mance. The gutqcorrelatlon function for each channel gainpgise processes from (3). A disadvantage of FIR filters is
processg, [k] is given by that the weight vectow must be adjusted for different lev-

X 9 . B els of measurement noise which is computationally expen-

E{g, K elnl} =0y’ o 2nfalin=k)) @) gye The next section wil present the use of the Kalman

filter for channel estimation which adjusts easily to chang-

whereo,? is the mean power gain of thé" propagation X i
ing measurement noise levels.

path, 7, () is the zero-order Bessel function of the first
kind, f; is the maximum Doppler frequency and superscript
* denotes complex conjugation [5]. The maximum Doppler 3.2, Kalman Filtering Channel Estimation

frequency is given byf; = "—i' wherew is the velocity of o o ] ]

the mobile terminal and is the wavelength of the radio The Kglman filter is an es’umaﬂon technique which uses a
frequency carrier. If the wireless network obtains the gpee dynamic model of a system to optimally system states from
of the mobile terminal from the mobile terminal location OISy linear measurements. The system state at jinse
estimation system, the valueis known and the Doppler ~denoted ase[j] and the dynamic model of system evolu-

frequency.f., is available to the channel estimation system. ion is given asz[j + 1] = ®z[j] + wlj] where ® is
the state transition matrix, and[j] is a white complex

Gaussian vector random process called the process noise

with E{w[jlw[j]*} = Q. If linear measurements of the

system state at timg are available ag[j] = H|[k]|z[j] +

v[j] where H[j] are known matrices, and[j] is a zero

mean white complex Gaussian random process with a co-

variance of R[j]. An advantage of Kalman filtering for

channel estimation is thaR[j] can vary from sample to

n,, [k] sample.

sk p[K] Tsn (3) We will describe the application of the Kalman filter to
- : the estimation of the channel gains for one propagation path

To decode symboly;, it is necessary to have estimates for p. For an orderM Kalman filtgr, the state vpect?)r?:ontair?s

the channel coefficients, k], which is calculated based on the lastd/ measurements of the channel gain coefficients
measurements [j] from previously received known sym- 9 .
P where measurements are made evgrgymbolsx,[j] =

bols. Section 3.1 will discuss methods for estimatin(y] ’ . . T
using Finite Impulse Response (FIR) filtering of past chan- (8,751 8,[(7 — 1S, .. g,[(j — M +1)S]]". The mea-
nel measurements. Section 3.2 discusses the extension cfurement for samplgis given byy([j] = §,[;S] where sub-
FIR methods to Kalman filtering of past channel measure- stituting from (3) it can be seen th&f[j] = s;s[10 ... 0]

ments to obtain higher accuracy of estimates of the channeRNdv[j] = n,[jS]/s;s which has a covariancR, [j] that
gains. is a function of the signal to noise ratio of the radio channel

For the remainder of this paper, we will assume tRg{;]

is known. The Kalman filter calculates estimates of the sys-
tem state;z[j], and error covariance?[j] = Cov{z[j] —

FIR filters estimate use a finite number of past measure-x[j]}. The estimated state vector and error covariance given
ments of a random sequence to estimate the current valueall measurements until sampite are denoted[j|m]| and

For an order)/ FIR filter, the channel gain coefficieg [] P[j|m]. Given an initial state estimat&0|0] and error co-

is estimated from the channel gain measurementsMor  variance estimat@|[0|0], it is possible to recursively calcu-
previous channel measurements,, ko, ..., ky using the late other estimates of the channel state using the Kalman

3. CHANNEL ESTIMATION

This section describes different methods for estimatimg th
channel gain coefficients. The basis for channel estimation
in CDMA systems is that if symba, is known, it is possi-

ble to measure the channel gains for symbbhsed on (1)

as

o i =2

p[

3.1. FIR Channdl Estimation



measurements af[j], I is an appropriately sized identity

zpllj — 1] = @aplj —1]j — 1] matrix, and) is a small positive value [4]. This method
Pjlj—1 = @®P,[j—1]j-1]®" +Q \{voorks well to calculate AR models of orders higher than
Yplili =1 = sys (10 02,15l — 1] . In this paper, we present a method for generating good
M,[jlj —1] = s5[10...0] Py[jlj —1][10..0]" s;5° AR-models of orders less than 10 by calculatingising an
+R,[j] over-determined system. The veciorof length A/ which
2l = wylil = 9plils — 1] gives the minimum square error when substituted into the
i P _— Weiner-Hopf equation is calculated whe is an (M +
Kplil = Bpljli — 1L 0. 0] s;s L) x M matrix andp is a vector of length/ + L. The
x (Mp[jlj — 1)~ entries ofC andp are given by
Zpljli] = plily — 1+ Kpljlzpli C o o
Pyljli] = (I—Kpjlsjs[10...0]) B[jlj —1] 0 .
pj = Op Jo (27Tfm.]) (7)
Fig. 1. Kalman Filter Equations whered(j) = 1 j=0 .. Several excellent com-
0 otherwise

) . . o . . _mercial and free software packages are available which can
filter equations given in Figure 1 if the dynamic model is so|ve such over-determined linear systems. Once a weight
known. _ o vectorw has been calculated, the state transition mabrix
The dynamic models used for channel estimation in the 5nq process noise covarian@ecan be calculated using (4)
literature are based on AR models of the channel evolution 54 (5). It has been found that using= 10~'2 andL = 5

process. The standard method of creating the state ti@msiti generated good AR models of ordeto 10 which gave ex-

matrix based on an AR model of ord&f is cellent results when used for Kalman filtering. The applica-
wy Wy .. Wy_1 W tion of the Kal_m_an filtering to the est_imation of the c_omplex
1 0 .. 0 0 channel coefficients are presented in the next section.
P — 0 1 .. 0 0 (4)
0 0 1 0

This section presents the application of the new Kalman fil-
wherew is a vector of prediction weights calculated by ters to the estimation and prediction of the channel gain for
solving the Weiner-Hopf equation for the predictiorggfjS]  a single propagation path. For the simulations, the mean
from noise free measurements. The process noise covaripower of the fading process Isand the power of the noise
ance is given by process i9.01, for a signal to noise ratio o20 dB. The

Rayleigh fading process to be tracked is generated using an

) M _ Inverse Discrete Fourier Transform method [7]. For each fil-
Qu=op [1- ijjo (27 fm ) (®) ter, average squared error of the predicted value, bff is
j=1 reported. For the Kalman filters this is calculated as the av-

. AT - . N *
with all other entries ofQ being 0 based upon the error ~ €'@9¢ value qup[]S] - gp[J_SH [2,55] - gp[J_SH where
calculation for FIR prediction filters [6]. The frequengy, g,[75]is the firstentry of¢[j| j —1]. For the optimal FIR fil-
is given by £,7,S whereT, is the symbol period. Previous terthe errorigg,,[jS] — &1[5S]] [g,[iS] — &1[ S]]~ where
efforts to use the Kalman filter for channel estimation have gg [75] is calculated using the optimal FIR filter to estimate
been limited to using dynamic models based an AR modelsg, [jS] with the inputs  [mS] form = {j —1,j-2,...,j—
of order1 or 2. This is due to the channel fading process M + 1}. Figure 2 shows the new Kalman filter when ap-
being anirrational process that cannot be perfectly medell plied to the estimation of wherf,, = 0.001. The error
by any finite AR model. This has caused the linear systemof the new Kalman filter is labelled as the ‘Overdetermined
that needs to be solved to obtainfor the state transition  Model’ Kalman filter on the results graph. The errors for a
model in (4) to be ill-conditioned. Generated AR models of Kalman filter where the ill-conditioning of the linear equa-
order 2-10 did not model the fading process well and thus tion to calculate the AR weight coefficients is reduced by
did not give good estimation performance. This problem adding\ to the diagonal entries of the covariance maix
can be reduced by altering the covariance matrix used wheras suggested in [4] are plotted in the results, labelled as ‘R
computing the weight vector. The covariance matrix is set duced Condition’. The errors results for a Kalman filter with
to C = Cy + \I whereCj is the covariance of noise free an unadjusted AR model are also plotted. It can be seen that
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Fig. 3. Kalman Filter Performanceff, = 0.01)

the new Kalman filter provides the best performance over
all of the shown filters. An FIR filter of order greater than
200 is required to match the performance of the Kalman fil-
ter of order5. For Kalman filters using AR models that are
not calculated from the over-determined system, the mis-

match between the AR models and the true channel process

causes the error performance with increasing filter order to

not monotonically decrease. The new filter gives the bestl

performance for ordes but Kalman filters of lower order
also gave excellent accuracy improvements over the FIR fil-
ter. Figure 3 shows the results for a faster fading process
with f,,, = 0.01. The new Kalman filter again has the best
performance with greater stability of the average errontha
the other Kalman filters as the order of the filter increases.

5. CONCLUSIONS

This paper presents a method for creating low-order Kalman
filters to accurately track the Rayleigh fading radio chan-
nel. This method is based on the calculation of low or-
der AR models with statistics closely matching those of the
Rayleigh fading process. Simulation results are presented
which show that the new Kalman filters can accurately track
the radio channel for fading processes of different band-
widths. It is also shown that the new Kalman filter gives
better performance than previously presented Kalman filter
algorithms and gives performance as good as optimal high-
order FIR filters with much lower computational cost. For
future work, the application of these filters to joint channe
estimation and symbol detection schemes will be investi-
gated.
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