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ABSTRACT

This paper addresses the design of low-order Kalman filters
to estimate radio channels with Rayleigh fading. Rayleigh
fading cannot be perfectly modelled with any finite order
auto-regressive (AR) process. Previously, only first and sec-
ond order Kalman filters were used for channel estimation
since higher order Kalman filters were found to not signif-
icantly improve accuracy. This is due to mismatches in the
statistics of the AR models of the Kalman filters and the true
Rayleigh fading. In this paper, the coefficients of the AR
models for the Kalman filter are calculated by solving for
the minimum square error solutions of an over-determined
linear systems. The AR models generated have statistics
closely matching the Rayleigh fading process. The Kalman
filter using these AR models can accurately estimate the
Rayleigh fading process. The accuracy of the new Kalman
filters is demonstrated in the tracking of simulated Rayleigh
fading processes of different bandwidths.

1. INTRODUCTION

A difficulty when designing wireless communications sys-
tems is managing the variation of the radio channel over
time. Current radio communications systems use estimates
and predictions of the radio channel state for power control
and data symbol decoding to mitigate the negative effects of
the varying radio channel. The effectiveness of these tech-
niques is determined by the accuracy of the radio channel
estimation system. Several types of adaptive filters have
been proposed for tracking of radio channels [1–3].

The advantages of Kalman filtering over other filter al-
gorithms is that the estimation algorithm computes the co-
variance of the channel estimation error which is useful when
performing data symbol decoding. The Kalman filter also
can adapt to changing levels of measurement noise. The
Kalman filter requires knowledge of the time evolution process
for the radio channel in the form of a finite auto-regressive
(AR) model for the radio channel. It is well known that
channel fading cannot be perfectly represented by any finite
order AR model. This causes the calculations of parameters
for finite order AR models which closely match the radio

channel to be ill-conditioned [4, 5]. The previous literature
on the use of Kalman filters for radio channel estimation is
limited to Kalman filters of order1 or 2 since the Kalman
filters of higher order based on AR models using parame-
ters from the ill-conditioned calculations did not provide
significant improvements in estimation accuracy. This pa-
per presents a new method for calculating the parameters
of AR models of orders from2 to 10 by developing over-
determined equations for the AR model coefficients. The
use of over-determined equations reduces the effect of the
ill-conditioning problem. How these AR models are used to
develop Kalman filters is presented. It is demonstrated how
these low order Kalman filters provide accurate estimation
and prediction of the radio channel fading process.

Section 2 presents the analytical model for the radio
channel measurements. Section 3 describes the radio chan-
nel estimation procedure and methods for calculating the
parameters of the Kalman filter. Section 4 presents results
on the use of the this algorithm. Section 5 presents the con-
clusions of the paper and ideas for future research.

2. SIGNAL MODEL

For this paper, the CDMA signalling for UMTS will be
used, which creates correlation properties in the transmitted
signal which allow radio receivers to resolve the different
radio propagation paths with delays differing by more than
a chip period [2]. For the rest of this paper, it will be as-
sumed that there areP resolvable radio propagation paths.

The spreading sequences and chip waveforms in UMTS
have been designed so that if the delays of the propaga-
tion paths are estimated perfectly, the individual received
sequences for the branch of the receiver corresponding to
propagation pathp is then approximately equal to

rp[k] = sk gp[k] + np[k] (1)

where the contributions of all other propagation paths other
than p and symbols other thank are almost perfectly re-
moved by the filtering and despreading procedures, andnp[k]
is the remaining white noise process after filtering and de-
spreading [2]. The noise processes for different propaga-



tion paths will be independent. For the remainder of this
paper, it is assumed that the propagation delays have been
perfectly estimated and the received signal on each path of
the receiver is given by (1).

The channel fading processesgp[k] for p = 0, 1, ..., P −
1 are modelled as independent complex Gaussian processes
with independent and identically distributed imaginary and
real components. If a givengp[k] has a zero mean, the
process is a Rayleigh fading process. If a givengp[k] has
a non-zero mean, the process is Rician fading. This pa-
per will concentrate on channel estimation for Rayleigh fad-
ing, since Rayleigh fading results in worse receiver perfor-
mance. The autocorrelation function for each channel gain
process,gp[k] is given by

E
{

gp[k] g∗p[n]
}

= σp
2J0 (2πfdTs(n − k)) (2)

whereσp
2 is the mean power gain of thepth propagation

path, J0 (·) is the zero-order Bessel function of the first
kind,fd is the maximum Doppler frequency and superscript
∗ denotes complex conjugation [5]. The maximum Doppler
frequency is given byfd = |v|

λ
wherev is the velocity of

the mobile terminal andλ is the wavelength of the radio
frequency carrier. If the wireless network obtains the speed
of the mobile terminal from the mobile terminal location
estimation system, the valuev is known and the Doppler
frequency,fd, is available to the channel estimation system.

3. CHANNEL ESTIMATION

This section describes different methods for estimating the
channel gain coefficients. The basis for channel estimation
in CDMA systems is that if symbolsk is known, it is possi-
ble to measure the channel gains for symbolk based on (1)
as

ĝp[k] =
rp[k]

sk

= gp[k] +
np[k]

sk

. (3)

To decode symbolsk, it is necessary to have estimates for
the channel coefficients,gp[k], which is calculated based on
measurementŝgp[j] from previously received known sym-
bols. Section 3.1 will discuss methods for estimatinggp[k]
using Finite Impulse Response (FIR) filtering of past chan-
nel measurements. Section 3.2 discusses the extension of
FIR methods to Kalman filtering of past channel measure-
ments to obtain higher accuracy of estimates of the channel
gains.

3.1. FIR Channel Estimation

FIR filters estimate use a finite number of past measure-
ments of a random sequence to estimate the current value.
For an orderM FIR filter, the channel gain coefficientgp[k]
is estimated from the channel gain measurements forM
previous channel measurements.k1, k2, ..., kN using the

linear equatioñgp[k] = wT x wherew is a vector of weight

coefficients,x =
[

ĝp[k1], ĝp[k2], ..., ĝp[kM ]
]T

, and super-
script T denotes matrix transposition. Since the channel
gain processes are zero mean wide sense stationary complex
Gaussian processes, the Minimum Square Error (MSE) esti-
mate ofgp[k] given theM past channel gain measurements
for symbolsk1, k2, ..., kM is obtained using the weight vec-
tor which is the solution of the Weiner-Hopf linear equation
Cw = ρ whereC = E

[

xxT
]

andρ = E
[

gp[k]x
]

[6].
The entries ofC andρ can be calculated using from the
autocorrelation of the fading process given in Section 2 and
adding the effect of the independent additive white Gaussian
noise processes from (3). A disadvantage of FIR filters is
that the weight vectorw must be adjusted for different lev-
els of measurement noise which is computationally expen-
sive. The next section will present the use of the Kalman
filter for channel estimation which adjusts easily to chang-
ing measurement noise levels.

3.2. Kalman Filtering Channel Estimation

The Kalman filter is an estimation technique which uses a
dynamic model of a system to optimally system states from
noisy linear measurements. The system state at timej is
denoted asx[j] and the dynamic model of system evolu-
tion is given asx[j + 1] = Φx[j] + w[j] whereΦ is
the state transition matrix, andw[j] is a white complex
Gaussian vector random process called the process noise
with E{w[j]w[j]∗} = Q. If linear measurements of the
system state at timej, are available asy[j] = H[k]x[j] +
v[j] whereH[j] are known matrices, andv[j] is a zero
mean white complex Gaussian random process with a co-
variance ofR[j]. An advantage of Kalman filtering for
channel estimation is thatR[j] can vary from sample to
sample.

We will describe the application of the Kalman filter to
the estimation of the channel gains for one propagation path
p. For an orderM Kalman filter, the state vector contains
the lastM measurements of the channel gain coefficients
where measurements are made everyS symbolsxp[j] =
[

gp[jS], gp[(j − 1)S], ..., gp[(j − M + 1)S]
]T

. The mea-
surement for samplej is given byy[j] = ĝp[jS] where sub-
stituting from (3) it can be seen thatH[j] = sjS [1 0 ... 0]
andv[j] = np[jS]/sjS which has a covarianceRp[j] that
is a function of the signal to noise ratio of the radio channel.
For the remainder of this paper, we will assume thatRp[j]
is known. The Kalman filter calculates estimates of the sys-
tem state,̂x[j], and error covariance,P [j] = Cov{x̂[j] −
x[j]}. The estimated state vector and error covariance given
all measurements until samplem are denoted̂x[j|m] and
P [j|m]. Given an initial state estimatêx[0|0] and error co-
variance estimateP [0|0], it is possible to recursively calcu-
late other estimates of the channel state using the Kalman



x̂p[j|j − 1] = Φx̂p[j − 1|j − 1]

Pp[j|j − 1] = ΦPp[j − 1|j − 1]ΦT + Q

ŷp[j|j − 1] = sjS [1 0 ... 0] x̂p[j|j − 1]

Mp[j|j − 1] = sjS [1 0 ... 0] Pp[j|j − 1] [1 0 ... 0]
T

sjS
∗

+Rp[j]

zp[j] = yp[j] − ŷp[j|j − 1]

Kp[j] = Pp[j|j − 1][1 0 ... 0]T sjS
∗

× (Mp[j|j − 1])
−1

x̂p[j|j] = x̂p[j|j − 1] + Kp[j]zp[j]

Pp[j|j] = (I − Kp[j]sjS [1 0 ... 0])Pp[j|j − 1]

Fig. 1. Kalman Filter Equations

filter equations given in Figure 1 if the dynamic model is
known.

The dynamic models used for channel estimation in the
literature are based on AR models of the channel evolution
process. The standard method of creating the state transition
matrix based on an AR model of orderM is

Φ =















w1 w2 ... wM−1 wM

1 0 ... 0 0
0 1 ... 0 0
... 0

.. . 0 0
0 0 ... 1 0















(4)

wherew is a vector of prediction weights calculated by
solving the Weiner-Hopf equation for the prediction ofgp[jS]
from noise free measurements. The process noise covari-
ance is given by

Q11 = σp
2



1 −

M
∑

j=1

wjJ0 (2πfmj)



 (5)

with all other entries ofQ being 0 based upon the error
calculation for FIR prediction filters [6]. The frequencyfm

is given byfdTsS whereTs is the symbol period. Previous
efforts to use the Kalman filter for channel estimation have
been limited to using dynamic models based an AR models
of order1 or 2. This is due to the channel fading process
being an irrational process that cannot be perfectly modelled
by any finite AR model. This has caused the linear system
that needs to be solved to obtainw for the state transition
model in (4) to be ill-conditioned. Generated AR models of
order 2-10 did not model the fading process well and thus
did not give good estimation performance. This problem
can be reduced by altering the covariance matrix used when
computing the weight vector. The covariance matrix is set
to C = C0 + λI whereC0 is the covariance of noise free

measurements ofx[j], I is an appropriately sized identity
matrix, andλ is a small positive value [4]. This method
works well to calculate AR models of orders higher than
10.

In this paper, we present a method for generating good
AR-models of orders less than 10 by calculatingw using an
over-determined system. The vectorw of lengthM which
gives the minimum square error when substituted into the
Weiner-Hopf equation is calculated whenC is an (M +
L) × M matrix andρ is a vector of lengthM + L. The
entries ofC andρ are given by

Cij = σp
2J0 (2πfm(i − j)) + λδ(i − j) and (6)

ρj = σp
2J0 (2πfmj) (7)

whereδ(j) =

{

1 j = 0
0 otherwise

. Several excellent com-

mercial and free software packages are available which can
solve such over-determined linear systems. Once a weight
vectorw has been calculated, the state transition matrixΦ

and process noise covarianceQ can be calculated using (4)
and (5). It has been found that usingλ = 10−12 andL = 5
generated good AR models of order2 to 10 which gave ex-
cellent results when used for Kalman filtering. The applica-
tion of the Kalman filtering to the estimation of the complex
channel coefficients are presented in the next section.

4. RESULTS

This section presents the application of the new Kalman fil-
ters to the estimation and prediction of the channel gain for
a single propagation path. For the simulations, the mean
power of the fading process is1 and the power of the noise
process is0.01, for a signal to noise ratio of20 dB. The
Rayleigh fading process to be tracked is generated using an
Inverse Discrete Fourier Transform method [7]. For each fil-
ter, average squared error of the predicted value ofgp[j] is
reported. For the Kalman filters this is calculated as the av-
erage value of

[

gp[jS] − ĝ′p[jS]
] [

gp[jS] − ĝ′p[jS]
]∗

where
ĝ′p[jS] is the first entry of̂x[j|j−1]. For the optimal FIR fil-

ter the error is
[

gp[jS] − ĝ′′p [jS]
] [

gp[jS] − ĝ′′p [jS]
]∗

where
ĝ′′p [jS] is calculated using the optimal FIR filter to estimate
gp[jS] with the inputŝgp[mS] for m = {j−1, j−2, ..., j−
M + 1}. Figure 2 shows the new Kalman filter when ap-
plied to the estimation of whenfm = 0.001. The error
of the new Kalman filter is labelled as the ‘Overdetermined
Model’ Kalman filter on the results graph. The errors for a
Kalman filter where the ill-conditioning of the linear equa-
tion to calculate the AR weight coefficients is reduced by
addingλ to the diagonal entries of the covariance matrixC

as suggested in [4] are plotted in the results, labelled as ‘Re-
duced Condition’. The errors results for a Kalman filter with
an unadjusted AR model are also plotted. It can be seen that
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Fig. 2. Kalman Filter Performance (fm = 0.001)
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Fig. 3. Kalman Filter Performance (fm = 0.01)

the new Kalman filter provides the best performance over
all of the shown filters. An FIR filter of order greater than
200 is required to match the performance of the Kalman fil-
ter of order5. For Kalman filters using AR models that are
not calculated from the over-determined system, the mis-
match between the AR models and the true channel process
causes the error performance with increasing filter order to
not monotonically decrease. The new filter gives the best
performance for order5 but Kalman filters of lower order
also gave excellent accuracy improvements over the FIR fil-
ter. Figure 3 shows the results for a faster fading process
with fm = 0.01. The new Kalman filter again has the best
performance with greater stability of the average error than
the other Kalman filters as the order of the filter increases.

5. CONCLUSIONS

This paper presents a method for creating low-order Kalman
filters to accurately track the Rayleigh fading radio chan-
nel. This method is based on the calculation of low or-
der AR models with statistics closely matching those of the
Rayleigh fading process. Simulation results are presented
which show that the new Kalman filters can accurately track
the radio channel for fading processes of different band-
widths. It is also shown that the new Kalman filter gives
better performance than previously presented Kalman filter
algorithms and gives performance as good as optimal high-
order FIR filters with much lower computational cost. For
future work, the application of these filters to joint channel
estimation and symbol detection schemes will be investi-
gated.
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