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1 Introduction
• Reasons for location technologies:

– Resource allocation, location sensitive browsing, emergency com-
munications.

• Many measurement types proposed:

– Received Signal Strength (RSS), Angle of Arrival (AoA), Time of
Arrival (ToA), Time Difference of Arrival (TDoA)

– All methods have errors in location estimation.

• Filtering is proposed to reduce estimation errors.

– Performance of filter dependent on model of dynamic and mea-
surement process.

• Propose a mobile terminal model which is

– Based on an accurate model of mobile terminal motion.
– Model parameters based on real world measurements.

2 Propagation and Measurement
Model

2.1 Propagation Model

• Use ToA measurements

• Consider effects of:

– Line of sight and non line of sight propagation
– Multipath propagation

2.2 Measurement model
• Zero memory estimation creates a linear pseudo-measurement:

y(k) = Hx(k) + v(k)

– y(k) is estimated location for k calculated from z(k)

∗ Non-parametric estimation method used.
∗ Survey points characterize propagation environment.
∗ Robust to multipath and non line of sight propagation.

– H is the measurement matrix
– x(k) is the location state of the mobile terminal at time k

– v(k) is the measurement noise at time k

– R(k) is the covariance of v(k)

2.3 Motion Model
• Discrete time dynamic model:

– x(k) is the location state of mobile terminal at time k

– Φ is the state transition matrix
– Γ describes influence of control input on state
– u(k) is user control input at time k

– w(k) is Gaussian random process noise with covariance Q

• u(k) changes most often when user in intersection.

• u(k) usually invariant when user not in intersection.

• Discrete set of possible control inputs:

– u(k) ∈ {u1,u2, ...,uN}

– Control inputs match direction of streets.

3 Filtering and State Estimation
• Need to estimate control input, u(k), as well as state, x(k)

• Bank of Kalman filters

– Final estimate for x(k) is a weighted average of Kalman filter out-
puts.

– Each Kalman filter matched to possible control input.
– Weights updated using measurement y(k), old weights, and con-

trol input transition probabilities.
– Control input transitions calculated from estimate of x(k − 1)

3.1 Estimation of Control Input
• Control input process modeled as Markov-one process given loca-

tion

– Transition probability of control input is a function of current loca-
tion and current control input.
∗ e.g. Transitions more likely in intersections.

• Increasing convergence speed of Kalman filters:

– Q = Qmodel + ΓQuΓ
T

– Qmodel is covariance of w(k) from dynamic model
– Trade off in selection of Qu:
∗ High value gives fast convergence with larger final error
∗ Low value gives slow convergence with lower final error
∗ Optimal value function of probability of turning at intersections.

4 Results
• Simulated urban environment

– Realistic propagation model
– Realistic base station selection
– Maneuvering mobile terminal

• New filter compared with application of single Kalman filter

– Simple Kalman filter assumes u(k) is a Gaussian random process.

Location Error Comparison

6

7

8

9

10

11

12

13

14

0 20 40 60 80 100

R
oo

t M
ea

n 
Sq

ua
re

 E
rr

ro
r 

(m
)

Samples Since Start of Filtering (Sample Time = 0.5 seconds)

Zero memory estimator
Simple Kalman filter

Multi-model filter

Velocity Error Comparison
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• Results of comparison:

– New filter has lower error.
– New filter converges faster than single Kalman filter

• Test of Filter Robustness

– Mobile’s probability of turning at each intersection varied
– New filter optimized for different turning probabilities tested

Robustness of Filter
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5 Conclusions
1. New multi-model filter increases accuracy of mobile terminal loca-

tion.

2. New filter is robust to changes in motion model.


