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Evolution of Wireless Services
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Mobility & Multimedia
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Mobility & Multimedia

3G Systems

{

UMTS (ETSI)
IMT-2000 (ITU)

Support user bit rates up to 2 Mbps
High mobility environment: 144 kbps

Ad Hoc Systems

{

IEEE 802.11
Bluetooth
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Signal Processing for Wireless
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Signal Processing for Wireless

Key problems:
Capacity
Resource allocation
Connection management
Channel management
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Signal Processing for Wireless

Present: Reactive control methods

Future: Proactive control methods
Requires future system state estimation.
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State Estimation
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State Estimation

Adaptive estimation
Learning model.
Adapting to changing model.

Estimation techniques
Parametric
Non-parametric
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Mobility Management

Need to know resources that terminals require in future
Prediction of future locations.

Channels
Handoff algorithm
Routing

Power/Bandwidth allocation
Power control
Code selection (CDMA)
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Mobility Management
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Mobile Terminal Location

Locating mobile terminal from radio signal

Applications
Resource allocation
Location sensitive information
Emergency communications
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Terminal Location Methods

Handset based
Perception of user privacy.
Currently greater accuracy.

Network based
Cheaper terminals.
Greater potential accuracy

FCC Requirements
Configuration Accuracy Requirement

> 67% > 95%

Handset 50 m 150 m
Network 100 m 300 m
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Terminal Location Measurements

Received Signal Strength(RSS),
Time of Arrival (ToA),
Time Difference of Arrival (TDoA).

Angle of Arrival (AoA).
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Terminal Location Measurements

Measurement Type Advantages Disadvantages

Received Signal Strength
(RSS)

• low cost measurements
• simple computations

• low accuracy in large cells

Angle of Arrival (AoA) • simple computations • specialized antennae
• low accuracy in large cells

Time of Arrival (ToA) • time measurement re-
quired for TDMA/CDMA
network operation

• simple computations

• synchronized network re-
quired

• receiver must know time
of transmission

• expensive measurement

Time Difference of Arrival
(TDoA)

• time measurement re-
quired for TDMA/CDMA
network operation

• receiver does not need
time of transmission

• synchronized network re-
quired

• expensive measurement
• complex calculations

TDMA - Time Division Multiple Access, CDMA - Code Division Multiple Access
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Radio Signal Measurements

Non-linear effects make problem more complex
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Radio Signal Measurements

τ (k) is the vector of propagation time measurements for
sample time k

τ (k) = d(k) + ε(k)

d(k) is the vector of propagation distances.
ε(k) is the vector of measurement noise.

z(k) is ToA/TDoA measurement vector:

z(k) = Fτ (k)

F is the measurement difference matrix.
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Geometric Dilution of Precision (GDOP)

High Precision Geometry

Low Precision Geometry
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My Contribution

1. Improved Zero Memory Estimation

2. Bounds on Zero Memory Estimation Error

3. Model-based Dynamic Estimation
New Filter Algorithm Developed

4. Bound on Dynamic Estimation Error
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Zero Memory Estimation

Previously proposed techniques are Maximum
Likelihood Estimators(MLE).

Problems with MLE:
Prior knowledge is ignored.
Assumed Line of Sight (LOS) propagation model.

NLOS is common in urban areas of interest.
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Zero Memory Estimation

Observations:
Statistical knowledge of terminal position available
from hand off algorithm.
Propagation survey made during network
configuration.

=⇒ Network has knowledge that can be used for
location.
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Zero Memory Estimation

k is sample interval.

θ(k) is location of mobile terminal at k.

θ̂(k) is estimated location of mobile terminal at k.

Survey data: j survey point, j ∈ {1, 2, ..., n}.
θj , location of survey point j.
zj, measurement taken at survey point j.
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Zero Memory Estimation

Estimated location is weighted average of survey point
locations:

θ̂(k) =

∑n
j=1

θjh(z(k), zj)
∑n

j=1
h(z(k), zj)

h(·) is kernel function.
Estimated location is weighted average of survey
point locations.
Weights determined by kernel functions.
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Zero Memory Bounds

NLOS propagation creates discontinuities in
propagation equations.

Standard bounds (e.g. Cramer-Rao no longer apply).

Use other bounds
Barankin bounds
Weinstein-Weiss bounds.
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Simulated Environment
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Zero Memory Results
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Zero Memory Results
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Dynamic Estimation

Combine measurements from different sampling
periods.

Use dynamic model of mobile terminal motion.

Dynamic model consists of:
Kinematic model.
Human Decision model.
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Mobile Terminal Motion Model
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Kinematic Model

x(k) is terminal state.

u(k) is control input.

w(k) is process noise.
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Human Decision Model
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Zero Memory Estimator Preprocessor
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Dynamic Estimation

Prediction phase

Correction phase
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Dynamic Estimation
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Bounds on Dynamic Estimation

Combine following information sources:
Zero Memory Estimator.
Dynamic model for mobile terminal motion.
Prior distribution for mobile terminal location.

Bound calculated on squared error.
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Dynamic Estimation Results

Fixed Control Input
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Dynamic Estimation Results

Changing Control Input
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Dynamic Filter Comparison
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Dynamic Filter Comparison

Changing Control Input
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Dynamic Filter Robustness
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Dynamic Filter Robustness
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Dynamic Filter Robustness
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Results
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Conclusions

Use all information sources.

Model-based estimation gives accurate location
estimates.

Efficiently combines information from different time
periods.

Estimation methods are robust.
Zero memory estimator robust to changes in
noise/propagation model.
Dynamic estimator robust to changes in dynamic
model.
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Future Work

1. Applications of mobile terminal location.

2. Long term motion models.

3. Data fusion.

4. Location of terminals in ad hoc networks.
Location of terminals in hybrid networks.

Dynamic Model-Based Filtering for Mobile Terminal Location Estimation – p.46/51



Applications

Resource allocation

Hand off algorithms

Many possibilities for collaboration.
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Long Term Motion Models

Current dynamic filter based on short term motion
models.

Long term motion models will improve estimation.

Improve motion prediction.
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Data Fusion

Use data from multiple information sources.
RSS is cheap with wealth of propagation data but
has large uncertainty.
ToA/TDoA are expensive with low uncertainties.
AoA requires special antennae and provides varying
accuracy.
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Ad Hoc Networks

Examples: Bluetooth, IEEE 802.11

Terminal must be low cost.

Limited connectivity between terminals.

Hybrid networks
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Final words

Large amount of work to be done.

Many applications of results.

Potential to develop new estimation and filtering
algorithms.
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