
FULL-CUSTOM SOFTWARE FOR START/END POINT

DETECTION OF ISOLATED-SPOKEN WORDS

Mihai SIMA, Dragoş BURILEANU, Corneliu BURILEANU, Victor CROITORU

«Politehnica» University of Bucharest, Faculty of Electronics and Telecommunications,
Blvd. Iuliu Maniu 1-3, sect.6, Bucharest 77202, Romania,

phone: (+40.1) 410.64.45, fax: (+40.1) 411.11.87,
e-mail: {sima,croitoru}@ADComm.pub.ro, {bdragos,cburileanu}@mESsnet.pub.ro.

Abstract
An important problem in speech recognition is to detect the presence of speech in a background of noise. This

problem is often referred to as the start/end point location problem.
The algorithm proposed is based on two measures of speech: short-time energy and zero-crossing rate

either/or low-pass filtered version of these. The present implementation of our algorithm makes use of a true
multi-tasking operating system (Linux), to account for the asynchronous events of speech acquisition. The
algorithm forms, along with a noise compensation algorithm, a front-end processor of a speech recognizer system.

Firstly, the paper motivates the need of speech detection for speech recognition tasks. Next, we describe the
philosophy of start/end point detector and show some software implementation details. The paper ends with main
results and conclusions.

Keywords: start/end point detection, isolated-spoken words recognition, energy, zero-crossing rate,
multi-tasking operating system (Linux).

1. Introduction

An important problem in speech recognition

is to detect the presence of speech in a

background of noise. This problem is often

referred to as the start/end point location

problem [5].

The algorithm proposed for start/end point

detection of isolated-spoken words is rather a

modified version of the one proposed in [1]. The

main difference is the original one performs an

end point detection on a fixed-size recording

including one word only, while the present one

extracts the isolated-spoken words from a

continuous recording.

Our algorithm is based on two measures of

speech: short-time energy and zero-crossing rate

either/or low-pass filtered version of these.

The algorithm forms, along with a noise

compensation algorithm, a front-end processor of

a speech recognizer system. It should be noted

here that speech detection is necessary for speech

recognition since word boundaries must be

approximately known to trigger the recognizer

correctly.

Fig. 1. DTW alignment for two utterances
including about one third of useful speech

Moreover, proper location of regions of

speech not only substantially reduces the amount

of processing, but also increases the recognition

rate. For example, two utterances are to be

compared by a dynamic time warping (DTW)

procedure, each of them including about one

third of useful speech information (fig. 1). The

regions marked as noise are susceptible to

produce errors, as utterances may be considered

as “equals” during these regions. We believe this

is one of the major difficulties in classifying

among digits “2” and “8”, both of them being of

short length [6].

2. Algorithm for start/end point detection

of isolated-spoken words

A reliable discrimination between voice and

silence constitutes a difficult classification

problem. It is known that zero-crossing rate

generally complements the energy, i.e. during a

word, when energy is low, zero-crossing rate is

usually high and vice-versa [1][5]. Therefore, the

algorithm rely on these two measures of speech,

one with meaning of magnitude and the other

with meaning of frequency [1]:

∑
−

=
−=

1N

0m

)mn(x)m(w)n(Ê (2.1)

[] []
∑

−

=

+−=
1N

0n 2

)n(xsgn)1n(xsgn1
ZCR (2.2)

where)n(Ê is the pseudo-energy of the input

signal x(n), w(m) is the weighting window, N is

the window size, and ZCR means zero-crossing

rate.

The energy is mainly used to discriminate

voiced/unvoiced regions of speech. We used

pseudo-energy instead of energy as it is less

sensitive to high signal levels.

Zero-crossing rate is also a very useful

parameter for speech detection. A zero-crossing

may be mathematically described by:

[] [])n(xsgn)1n(xsgn ≠+ (2.3)

where

[]

<−
≥+

=
0)n(xif1

0)n(xif1
)n(xsgn (2.4)

The proposed algorithm can choose the

parameters corresponding with table 1.

We have to note that all the options but

FILTERING can be either/or employed;

FILTERING option can be or employed.

The figure 2 shows the principles used for

start/end point detection.

Feature class Options
SAMPLING RATE 8/16 kHz
QUANTIZATION 8/16 bit
WINDOW LENGTH 16/32/64 msec
FRAME LENGTH 8/16/32 msec
WINDOW FUNCTION Dirichlet/Hamming
SPEECH
PRE-AMPLIFICATION

yes/no

SPEECH PRE-EMPHASIZE yes/no
ENERGY energy/pseudo-energy/2nd autocorrelation coefficient
ENERGY LOG-COMPRESSION yes/no
FILTERING ENERGY low-pass filtering/ ZCR low-pass filtering
ZERO-CROSSING RATE GAP 1/3/5
THRESHOLDS any float numbers
read from stdin non-blocking/blocking

Table 1. Algorithm options

Fig. 2. The algorithm used for start/end point detection.

Fig. 3. The flowchart of the main subroutine.

Fig. 4. The flowchart of the segmentation
subroutine.

3. Software implementation details

The program we propose is actually a filter:

it reads from standard input and writes to

standard output. As a consequence, the program

may be easily included in a shell script. The

flowchart of the main subroutine is shown in

figure 3.

It includes a non-blocking loop to read data

from a pipe (stdin). To account for different

OSes, we chose the buffer size argument of

read() function to be equal to

_POSIX_PIPE_BUF value [8]. When data is not

present in the pipe, segmentation subroutine is

called in order to classify between speech and

noise. The segmentation loop exits when there

are no words to extract any more. Then the

program dynamic reallocs to update the storage

requirements and goes back to the non-blocking

read.

The flowchart of the segmentation

subroutine is shown in figure 4. It includes

callings of begin_detect() and end_detect()

subroutines.

The main idea is if no word_BEGIN is

found, the buffer storing the acoustic vectors is

truncated in order to remove the noisy region.

But if a word_BEGIN is found, a word_END

detection is subsequently performed. If there are

not enough data to allow word_END detection

decision after a word_BEGIN was found, the

switch is set up in order to bypass begin_detect()

sequence on next calling of segmentation().

In order to facilitate the integration of the

proposed software into native parallel data

acquisition system such as a multi-microphone

one, the routines were carefully written to

provide synchronization between threads [3][4].

Two mutual exclusion locks (mutex) were

defined at the level of memory dynamic

reallocation (fig. 3) and begin_detect() and

end_detect() subroutines (fig. 4). Therefore, the

start/end point classification decisions and

consequently memory reallocations are

performed in a flexible way.

4. Results and conclusions

Our algorithm was implemented at the

pre-processor level of two different systems: an

isolated-word speaker-independent recognition

system [2] and a voice dialing system in

Romanian [7].

The word detection algorithm runs with no

problems for isolated-spoken words. However,

the problem of start/end point detection is by far

more difficult for a speaker-independent voice

dialer application. The algorithm should not split

digits including, for example, unvoiced plosives

(p, t) with large silence regions. Also, the

algorithm should not link digits when it is hard to

distinguish the silence period between words,

from surrounding sounds. In figure 5 we show

such a difficult combination.

Therefore, our word detection algorithm

performs well for digits separated by silence no

shorter than 300 msec.

Fig. 5. Waveform, energy and ZCR graphics for “zero-six”

An important effort was directed to identify

the optimum choice at different stages of

software development; for example, window and

frame durations, filtering parameters, integer

arithmetic instead of floating point one, use of

POSIX and ANSI C standards.

The performances of the start/end point

detection algorithm described in this paper

allowed for a robust, speaker independent,

speech recognition system.

References

[1] Burileanu, C., “Contribuţii la realizarea

sistemelor logice programate cu aplicaţii în

electronica funcţională (Recunoaşterea

automată a vorbirii)”, PhD Dissertation,

Polytechnical Institute of Bucharest,

Bucharest, 1986.

[2] Burileanu, D., M. Sima, C. Burileanu, V.

Croitoru, “A Neural Network-Based

Speaker-Independent System for Word

Recognition in Romanian Language”,

Proceedings of the “Text, Speech, Dialog”

Conference, Brno, Czech Republic, pp.

177-182, 1998.

[3] McCarthy, M., “What is Multi-Threading ?”,

Linux Journal, Issue 34, pp. 31-40, 1997.

[4] McCarthy, M., “Thread-Specific Data and

Signal Handling in Multi-Threaded

Applications”, Linux Journal, Issue 36, pp.

45-52, 1997.

[5] Rabiner, L. R., M. R. Sambur, “An

Algorithm for Determining the Endpoints of

Isolated Utterances”, The Bell System

Technical Journal, Vol. 54, No. 2, pp.

297-315, 1975.

[6] Sima, M., V. Croitoru, D. Burileanu,

“Performance Analysis on Speech

Recognition using Neural Networks”,

Proceedings of the International Conference

on Development and Application Systems,

Suceava, Romania, pp. 259-266, 1998.

[7] Sima, M., D. Burileanu, V. Croitoru, C.

Burileanu, “The Application of Neural

Network Paradigms in Speech Recognition

for a Romanian Voice Dialing System”,

Proceedings of Communications-98, Military

Technical Academy, Bucharest, pp. 233-238,

1998.

[8] Stevens, W. R., Advanced Programming in

the UNIX® Environment, Addison-Wesley,

Reading, Massachusetts, 1992.

