
A PARSER-BASED TEXT PREPROCESSOR
FOR ROMANIAN LANGUAGE TTS SYNTHESIS

'UDJRú�%85,/($18��&ODXGLXV�'$1��0LKDL�6,0$��&RUQHOLX�%85,/($18

«Politehnica» University of Bucharest, Faculty of Electronics and Telecommunications,
Blvd. Iuliu Maniu 1-3, Sector 6, Bucharest 77 202, ROMANIA.

E-mail: bdragos@mESsnet.pub.ro

ABSTRACT

Text preprocessing plays an important role in a text-
to-speech (TTS) synthesis system. The correct detection
and interpretation of input strings influence the overall
system accuracy and contribute to the conversion of an
unrestricted text into synthetic speech. This paper
describes the design philosophy of a preprocessing
module for a TTS system in Romanian language. The
preprocessor is implemented using the standard
flex/bison lexer and parser generators. The paper
discusses the text preprocessing task and the major
difficulties connected with Romanian language, proposes
a set of definitions and rules, gives some implementation
details and concludes with a few considerations about
the TTS system and performances of the preprocessing
module.

1. INTRODUCTION

For many years, natural sounding text-to-speech
synthesis has been an important goal for speech
researchers. However, even if many commercial TTS
systems have now reached a satisfactory quality, we are
still far from obtaining a machine able to read as fluent,
intelligible and natural as a human speaker [3]. A lot of
research is to be done to convert any text into natural
speech in a given language.

Usually, a TTS system comprises a natural language
processing stage, able to produce a phonetic
transcription of the input text, together with information
about intonation, stress and duration, as well as a signal
processing stage, which transforms the symbolic
information it receives into speech [1], [2], [4].

The basic modules of a (high quality) natural
language processing stage are depicted in figure 1.

• The text preprocessor converts the input text into a
standard orthographic form, suitable for further
processing. All the words in the current sentence,
including abbreviations, acronyms, number sequences,
time expressions and dates, are identified and possibly
transformed into full text.

• The morpho-syntactic analysis finds the part of
speech categories for each word and also the syntactic
structure of text sentences.

• The letter-to-phone conversion transforms the
orthographic character sequences into phonetic ones
(usually allophone sequences).

• The prosodic analysis assigns melodic contours to
the sentence and duration values to each acoustic
segment.

Usually, written texts are presented as strings of
ASCII characters; they consist of orthographic words,
and also of symbols such as punctuation marks, number
strings, or mathematical operators. One may encounter
numerals (for example, in Romanian, al 2-lea – 'the 2nd',
24, 24.530, 2,453), abbreviations (Prof., ms, ing. – for
'engineer', dl – for 'mister'), or acronyms (IBM, S.R.L.,
TTS). These strings may be considered "anomalous"
(from a linguistic point of view) relative to the majority
of text words, and have to be converted into a suitable
orthographic format before any other linguistic analysis.
This conversion represents the task of the preprocessing
module. This task also includes word and sentence
boundary detection, as well as punctuation marks and
special symbols processing [4], [6], [8], [9].

2. TEXT PREPROCESSING

Text preprocessing for a TTS system is a difficult
task in any language. In Romanian language, the number
of pronunciation problems and ambiguities is big
enough; they include, for example, multiple functions for
period, comma and colon, or different pronunciations for
numerals – according to case, number and gender [2].

For our TTS system, we proposed a set of definitions
and preprocessing rules, based on a detailed analysis of
the most common use of punctuation marks, lower- and
upper cases and digit sequences.

The basic proposed definitions are given bellow.
D1. A "word" is a sequence of lower case letters.
D2. An "expression" is a sequence of characters that

contains one or more of the following categories: a letter
sequence with at least one upper case; a digit sequence;
punctuation marks; other special symbols.

Phonemes and prosody

Prosodic
analysis

Letter-to-phone
conversion

Conversion into
lexical format

dictionary

Morpho-syntactic analysis

Prosodic
rules

Pronouncing
rules

Exception
dictionary

Normalization
rules

Text
preprocessing

Text

Fig. 1. The structure of the natural language processing stage in a TTS system

D3. An "extra-textual symbol" is a symbol
performing a punctuation function.

D4. An "inter-textual symbol" is a symbol that
belongs to an expression and helps to its spelling.

D5. "Expansion" is the process of conversion of an
expression to its full textual form.

D5. An "ambiguous character sequence" is a
sequence of characters that may affiliate with more than
one linguistic class.

According with those definitions, we designed a
preprocessing algorithm, which mainly consists of three
basic steps:

I. Text segmentation
The input text is segmented into character groups,

from left to right. We obtain strings of ASCII characters
delimited by white space characters; punctuation is
temporarily included into these groups.

II. Conversion of anomalous symbol strings into
orthographic characters

We defined an original rule set for Romanian
language regarding the detection of basic punctuation
marks (. , ? ! : ; ... - / ' " () [] { }) and
mathematical operators, as well as numerals,
abbreviations and acronyms expansion. The character
groups obtained after the first step are transcribed into
orthographic characters (when necessary), based on a
crude contextual analysis at word/sub-word level, and a
number of dictionaries for abbreviations and unusual
acronyms.

III. Interpretation of certain punctuation marks
The text preprocessor also detects and memorizes the

position of certain punctuation marks, in order to be used
by morpho-syntactic and prosodic modules.

Next we give some fundamentals rules used for the
correct detection and interpretation of periods.

Firstly, one must note that in Romanian language the
period (.) may occur in abbreviations (e.g. tel., etc.,
P.S.), acronyms (S.R.L. – for 'Ltd.'), digit sequences
(1.234, 1.234,567, 21.03.1999), in sequences of three
periods indicating, for example, that a text fragment will
be omitted (…), or may indicate the end of a sentence.
Ambiguities created by period are a major problem for
the preprocessing task, because it may represent either
an "extra-textual" or an "inter-textual" symbol, or both.
For example, the period after an abbreviation may also
indicate the sentence-end.

The previous considerations suggest the procedure to
be followed: when a period embedded in a character
group is detected, the context is investigated in order to
take the appropriate decision:
– if the period is surrounded by digits, the period is

considered as an "inter-textual" symbol and further
analysis is performed:

– if another period, separated by two digits is
detected, the sequence represents a date and is
expanded accordingly (e.g. 21.03.1999 =
dou�zeci úL unu martie o mie nou� sute nou�zeci
úi nou�);

– if the string of digits contains no other period or
it contains other period(s) separated by three
digits, it is a number (e.g. 1.234.567 = un milion
dou� sute treizeci úL patru de mii cinci sute
úaizeci úi úapte);

– if there are three consecutive periods, it is an ellipsis
and is replaced by the text 'puncte puncte';

– if the period appears at the end of a sequence of
lower/upper case letters and, possibly, other periods,
the "expression" is looked-up in the corresponding
dictionary and:

– if the "expression" is found, the period is
considered an "inter-textual" symbol and the

sequence is expanded to the form in the
dictionary;

– if it is not found, but all letters in the
"expression" are upper cases, it is an acronym
and it is expanded to the sequential reading of
their characters produced individually (e.g.
S.R.L. = se re le);

– if none of the previous rules is meet, the period
that should be in the final position of the
"expression", is declared an "extra-textual"
symbol and represents the sentence-end; its
position is marked and sent to the morpho-
syntactic and prosodic analysis modules.

But this analysis still can not solve the ambiguity of
the case when the same period is used for both an
abbreviation (or an acronym) and also comes at the end
of a sentence (etc. and ú.a. – 'and others' are typical
cases). In the above-mentioned situations, the period is
memorized, in order to inform the subsequent modules
of its status.

We must also emphasize that a special attention was
paid to hyphens, mathematical expressions, proper
names, and insertion of prosodic pauses for numerals
spelling.

3. PREPROCESSOR IMPLEMENTATION

We implemented the preprocessor using the standard
lex/flex and yacc/bison lexer and parser generators.
These programs generate a very efficient C code for the
preprocessor and also provide a standard and eloquent
conversion rules description for the three tasks to be
performed (described in Section 2).

The flex-generated lexer performs the input text
segmentation and identifies "words" and "expressions"
(see definitions in Section 2). "Expressions" are further
separated according to their type (number of upper cases
and inter-textual symbols), providing appropriate
information to the parser. It also transforms numbers,
dates and hours into their character sequences using
separately developed C routines. Detection of such digit
and punctuation strings that follow strict rules are best
suited for lexer processing.

For examples, identification of integers, written with
or without intermediate dots (e.g. 123456 ≡ 123.456) is
done by the flex code:

[0-9]+ {
yylval.dval = atof(yytext);
return INT;

}

[0-9]{1,3}[.]([0-9]{3}[.])*[0-9]{3} {
trimchar(yytext, '.');
yylval.dval = atof(yytext);
return INT;

}

All "words" and "expressions" identified by the lexer
are first looked up in abbreviation dictionaries according
to their forms, and the corresponding information is
provided to the parser. We use several dictionaries
grouping abbreviations based on the modality they are
written. For example, one dictionary contains only words
that are written using lower case letters (e.g. dna –
 'misses'), another contains words that use both lower-
and upper case letters (e.g. measurement units like Hz
and mA), another with dotted abbreviations (e.g. P.S.,
etc.), etc. Using more than one dictionary and grouping
words based on their respective writing manner
accelerates the search process. For each abbreviation the
dictionary indicates the correct spelling, including case,
number and gender forms when needed. A similar
processing sequence is used for acronyms.

The bison-generated parser identifies relationships
between different types of words using the information
provided by the lexer (numeral, abbreviation, acronym,
etc.). This allows, for example, the correct spelling of a
number followed by an abbreviated unit measure; note
that in Romanian language, between a number greater
than 20 and the numbered objects, an extra 'de' must be
inserted: 19 km = QRX�VSUH]HFH NLORPHWUL and 20 km =
GRX�]HFL GH NLORPHWUL. The number spelling also differs
according to the gender of the object. The bison code
that treats this situation is depicted next:

objects: number MEAS {
fprintf(yyout, "%s",

spellnum($1, NUMERAL, $2->gender));
if($1 > 1)

fprintf(yyout, "%s", $2->text_plur));
else

fprintf(yyout, "%s", $2->text_sing));
}
;

number: INT {$$ = $1;}
| FLOAT {$$ = $1;}
;

Our spellnum() function (not shown here) is a C
routine that translates a number into its correct sequence
of characters.

Using flex and bison we were able to concentrate on
specification issues, transferring parts of the C code
generation task to the two programs. An important effort
was devoted to balance the set of tasks to be done by
each program.

An error recovery mechanism allows the
preprocessor to be tolerant to some typical "syntax
errors", like phrase beginning with a lower case letter, or
end detection of input file before identifying a
punctuation mark that concludes the phrase. Incorrect
format for dates and numerals, as example, does not
cause preprocessor abnormal termination; they are
translated in their closest spelling form.

4. CONCLUSION

The TTS system built in our laboratory is based on a
two level parser for preprocessing and morpho-
syntactic/prosodic analysis, a powerful neural network
letter-to-phone converter and a diphone-concatenation
scheme; the system accepts Romanian language texts for
input and generates good quality speech.

However, we must note that our preprocessor
(together with linguistic analysis) can not solve all
possible text ambiguities or ungrammatical constructions
(even if, for example, unexpected special symbols are
ignored).

We evaluated the overall system accuracy on a large
set of newspaper and scientific texts; the number of
errors due to the preprocessor module was under 1%.

The number of unusual character sequences in a text
that must be translated into speech obviously depends on
the type and subject of text and on the writing
correctness [5], [7]. Since the writing rules are not
widely known in detail by the majority of people, we
think that a way to enforce correct writing is to include
our preprocessor (or even our entire TTS system) in a
spelling checker program that will let the user decide on
any ambiguity.

ACKNOWLEDGMENT

We would like to thank ECAS ELECTRO S.R.L.
Bucharest (Electronic Components Distributor) for
partially funding the research activity that lead to the
results presented in this paper.

REFERENCES

[1] BURILEANU, C., E. OANCEA, M. RADU, D.
BURILEANU, J. ARHIP, and L. VASILESCU,
"Text-to-Speech Synthesis for Romanian Language:
Present and Future Trends". In Recent Advances in
Romanian Language Technology (D. Tufis and P.
Andersen - Eds.), Romanian Academy, Bucharest,
pp. 189-206, 1997.

[2] BURILEANU, D., "Natural Language Processing
for Speech Synthesis in Romanian Language". In
Proceedings of The 12th International Conference
on Control Systems and Computer Science –
CSCS12, Bucharest, May 26-29, 1999.

[3] D'ALESSANDRO, C., M.G. RIZET, and P.B. DE
MAREUIL, "Synthèse de la parole à partir du
texte". In Fondements et perspectives en traitement
automatique de la parole (H. Méloni - Coord.),
Aupelf-Uref, pp. 81-96, 1996.

[4] DUTOIT, T., An introduction to Text-to-Speech
Synthesis, Kluwer, 1997.

[5] FERRI, G., P. PIERUCCI, and D. SANZONE, "A
Complete Linguistic Analysis for an Italian Text-to-
Speech System". In Progress in Speech Synthesis
(J.P.H. van Santen et al. – Eds.), Springer-Verlag,
New York, pp. 123-138, 1997.

[6] FRIES, G., and A. WIRTH, "FELIX – A TTS
System with Improved Preprocessing and Source
Signal Generation". In Proceedings of
EUROSPEECH'97, Rhodes, Greece, pp. 589-592,
1997.

[7] LIBERMAN, M.Y., and K.W. CHURCH, "Text
Analysis and Word Pronunciation in Text-to-Speech
Systems". In Advances in Speech Signal Processing
(S. Furui and M. Sondhi – Eds.), Dekker, New
York, pp. 791-831, 1992.

[8] LINDSTROM, A., and M. LJUNGQVIST, "Text
Processing within a Speech Synthesis System". In
Proceedings of the ICSLP, Yokohama, Japan, pp.
139-142, 1994.

[9] MOBIUS, B., R. SPROAT, J.P.H. VAN SANTEN,
and J.P. OLIVE, "The Bell Labs German Text-to-
Speech System: An Overview". In Proceedings of
EUROSPEECH'97, Rhodes, Greece, pp. 2443-2446,
1997.

