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Abstract

This paper presents an experiment which aims to assess
the potential impact on performance yielded by augmenting
a TriMedia/CPU64 processor with a reconfigurable core.
We first propose the skeleton of an extension of the Tri-
Media/CPU64 architecture, which consists of a Reconfig-
urable Functional Unit (RFU) and the associated instruc-
tions. Then, we address the computation of the 8�8 IDCT
on such extended TriMedia and propose a scheme to im-
plement the 1-D IDCT operation on the RFU. When im-
plemented on an ACEX EP1K100 FPGA from Altera, the
proposed 1-D IDCT exhibits a latency of 16 and a recov-
ery of 2 TriMedia (200 MHz) cycles, and occupies 42% of
the device. By configuring the 1-D IDCT computing facility
on the RFU at application load-time, a 2-D IDCT including
all overheads can be computed with the throughput of 1/32
IDCT/cycle. This is an improvement of more than 40% over
the standard TriMedia/CPU64.

1. Introduction

A common research question of today is the range of per-
formance improvements that may be achieved by augment-
ing a general purpose processor with a reconfigurable core.
The basic idea of such approach is to exploit both the gen-
eral purpose processor capability to achieve medium perfor-
mance for a large class of applications, and FPGA flexibil-
ity to implement application-specific computations. There
have been various attempts to attach a reconfigurable core to
a host processor in the last decade, most of them involving
a simple general purpose processor [1, 2, 3, 4, 5, 6, 7, 8, 9].
This paper presents an experiment which aims to assess the
potential impact on performance yielded by augmenting a
TriMedia/CPU64 processor with a reconfigurable core.

We first propose the skeleton of an extension of Tri-
Media/CPU64 architecture, which encompasses a Recon-
figurable Functional Unit (RFU) and the associated in-
structions. Computing facilities supporting operations of
user-definable latency, recovery, and slot assignment can
be configured on the RFU. In order to assess the poten-
tial of the proposed architectural extension, we chose an
8 � 8 Inverse Discrete Cosine Transform (IDCT) applica-
tion as benchmark. An 8 � 8 IDCT coded with a modified
‘Loeffler’ algorithm [15] can be scheduled in the standard
instruction set of TriMedia in 56 cycles [10]. Since the stan-
dard TriMedia provides good support for transposition and
matrix storage, we decided to provide RFU-hardware sup-
port only for an 1-D IDCT computing facility. Mapped on
an ACEX EP1K100 FPGA, the 1-D IDCT facility exhibits
a latency of 16, a recovery of 2 TriMedia (200 MHz) cy-
cles, and occupies 42% of the device. By configuring the
1-D IDCT computing facility on the RFU at application
load-time, a 2-D IDCT including all overheads can be com-
puted with a throughput of 1=32 IDCT/cycle. This is an im-
provement of more than 40% over the standard TriMedia.
Given the fact that TriMedia/CPU64 is a 5 issue-slot VLIW
processor with 64-bit datapaths and a very rich multimedia
instruction set [10], such an improvement within its target
media processing domain [11] indicates that the TriMedia-
FPGA hybrid is a promising approach.

The paper is organized as follows. For background pur-
pose, we briefly present the most important issues related
to IDCT theory and architecture of the reconfigurable core
in Section 2. Section 3 describes the proposed architectural
extension of TriMedia/CPU64. The current implementation
of the 8� 8 IDCT under the standard TriMedia, implemen-
tation issues of the 1-D IDCT computing resource on the
FPGA, the execution scenario of the 2-D IDCT on the ex-
tended architecture, as well as experimental results are pre-
sented in Section 4. Section 5 completes the paper with
some conclusions and closing remarks.
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2. Background and preliminaries

In this section, we briefly present the theoretical back-
ground of the IDCT. We also review the architecture of the
FPGA that we used as an experimental reconfigurable core.

2.1. IDCT theoretical background

The Inverse Discrete Cosine Transform is a highly com-
putational intensive part of MPEG decoding, and is used in
the JPEG (de-)compression of data as well. The transfor-
mation for an N point 1-D IDCT is defined by [13]:

xi =
2

N

N�1X

u=0

KuXu cos
(2i+ 1)u�

2N

where Xu are the inputs, xi are the outputs, and
Ku =

p
1=2 for u = 0, otherwise is 1. For MPEG, a

2-D IDCT processes an 8� 8 matrix X [14]:

xi;j =
1

4

7X

u=0

7X

v=0

KuKvXu;v cos
(2i+ 1)u�

16
cos

(2j + 1)v�

16

One strategy to compute the 2-D IDCT is the standard
row-column separation. The 2-D transform is performed by
applying the 1-D transform to each row (horizontal IDCTs)
and subsequently to each column (vertical IDCTs) of the
data matrix. This strategy can be combined with different
1-D IDCT algorithms to further reduce the computational
complexity. One of the most efficient 1-D IDCT algorithm
has been proposed by Loeffler [12]. A slightly different ver-
sion of the Loeffler algorithm in which the

p
2 factors are

moved around has been proposed by van Eijndhoven and
Sijstermans [15]. In our experiment, we will use this modi-
fied algorithm (see Figure 1).
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Figure 1. The modified ‘Loeffler’ algorithm.

In the figure, the round block signifies a multiplication
by C 0

0
=
p

1=2. The butterfly block and the associated
equations are presented in Figure 2.

I0

1I

O0

1O

O0 = I0 + I1
O1 = I0 � I1

Figure 2. The butterfly – [12].

A square block depicts a rotation which transforms a pair
[I0; I1] into [O0; O1]. The symbol of a rotator and the asso-
ciated equations are presented in Figure 3.
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16
� I1k sin

n�

16
= C 0

nI0 � S0nI1

O1 = I0k sin
n�

16
+ I1k cos

n�

16
= S0nI0 + C 0

nI1

Figure 3. The rotator – [12].

Although an implementation of such a rotator with three
multiplications and three additions is possible (Fig. 4 – a,
b), we used the direct implementation of the rotator with
four multiplications and two additions (Fig. 4 – c), because
it shortens critical path and improves numerical accuracy.
Indeed, there are three operations (two additions and a mul-
tiplication) on the critical path of the implementations with
three multipliers, while the critical path of the implemen-
tation with four multipliers contains only two operations (a
multiplication and an addition). Also, the initial addition
involved by the three-multiplier implementations may lead
to an overflow when fixed-point arithmetic is carried out.

2.2. The ACEX 1K FPGA architecture

The Altera ACEX 1K FPGA family [16] has been used
as experimental platform for the reconfigurable core. This
family has been chosen due to its favorable timing param-
eters. Also, this could allow future single-chip integration,
as both ACEX 1K FPGAs and TriMedia are manufactured
in the same TSMC technological process.

As the majority of Altera FPGAs, an ACEX 1K device
contains an embedded array to implement memory and spe-
cialized logic functions, a logic array to implement general
logic and interconnection network. The embedded array
includes a number of Embedded Array Blocks. The logic
array consists of a set of Logic Array Blocks, where each
such block contains eight Logic Elements (LE) and a
local interconnect network. A logic element is composed
of a 4-input Look-Up Table (LUT), which can compute any
function of four variables, a programmable flip-flop with
a synchronous enable, a carry chain, and a cascade chain.
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Figure 4. Three possible implementations of the rotator

Each LE drives both the local and a so called FastTrack in-
terconnects. The simplified architecture of LE is depicted
in Figure 5.
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Figure 5. ACEX 1K Logic Element – [16]

The ACEX 1K architecture provides two types of dedi-
cated high-speed data paths that connect adjacent LEs with-
out using local interconnect paths: carry chains and cascade
chains. The carry chain provides a very fast (as low as 0.2
ns) carry-forward function between LEs. The carry chain
logic generates the carry-out signal, which is routed directly
to the carry-in signal of the next-high-order bit. The carry-
in signal feeds into both the LUT and the next portion of
the carry chain. The cascade chain implements very-wide
input functions with minimum delay. Adjacent LUTs can
be used to compute portions of the function in parallel; the
cascade chain serially connects the intermediate values, us-
ing an AND or an OR gate. Each additional LE provides four
more inputs to the effective width of a function, with a delay
as low as 0.7 ns per LE.

Signal interconnections within ACEX 1K devices and
to and from device pins are provided by the FastTrack In-
terconnect, which is a series of fast, continuous row and
columns channels that run the entire length and width of the
device. Each I/O pin is fed by an I/O Element located at the
end of each row and column of the FastTrack Interconnect.
Each I/O Element contains a bidirectional I/O buffer and a
flip-flop that can be used as either an output or input register
to feed input, output, or bidirectional signals.

As a general view, we mention that the logic capacity
of the ACEX 1K family ranges from 576 LEs for EP1K10

device to 4992 LEs for EP1K100 device. The maximum
operating frequency for synchronous designs mapped on an
ACEX 1K FPGA is 180 MHz.

The next section will introduce the architectural exten-
sion for the TriMedia/CPU64.

3. The skeleton of an architectural extension
for TriMedia/CPU64

TriMedia/CPU64 is a 64-bit 5 issue-slot VLIW core,
launching a long instruction every clock cycle [10]. It has
a uniform 64-bit wordsize through all functional units, the
register file, load/store units, on-chip highway and external
memory. Each of the five operations in a single instruction
can in principle read two register arguments and write one
register result every clock cycle. In addition, each operation
can be guarded with an optional (4 th) register for condi-
tional execution without branch penalty. The architecture
supports subword parallelism and is optimized with respect
to media-processing. With the exception of floating point
divide and square root, all functional units have a recov-
ery1 of 1, while their latency2 varies from 1 to 4. The Tri-
Media/CPU64 VLIW core also supports double-slot opera-
tions, or super-operations. Such a super-operation occupies
two neighboring slots in the VLIW instruction, and maps to
a double-width functional unit. This way, operations with
more than 2 arguments and/or more than one result are pos-
sible. The current organization of the TriMedia/CPU64 core
is presented in Figure 6.

In the sequel, we will assume that the TriMedia/CPU64
processor is augmented with a Reconfigurable Functional
Unit (RFU) which consists mainly of a reconfigurable array
core. The reconfigurable functional unit is embedded into
the TriMedia as any other hardwired functional unit, i.e., it
receives instructions from the instruction decoder, reads its
input arguments from and writes the computed values back

1Minimum number of clock cycles between the issue of successive op-
erations.

2Clock cycles between the issue of an operation and availability of its
results.
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Figure 6. TriMedia/CPU64 organization – [10].

to the register file. In this way, only minimal modifications
of the basic architecture, and also of the associated compiler
and scheduler are required.

The RFU can be configured to be sensitive to an entire
5-slot VLIW instruction, i.e., to all five instructions issued
simultaneously in the TriMedia/CPU64 slots. A number of
computing facilities of different user-definable latency, re-
covery, and slot assignment (the issuing slot that the com-
puting facility will be sensitive to) can be configured on
RFU, and a set of single- or multi-slot operations can be
performed by each facility. Therefore, the RFU can be con-
figured to act as five independent functional units, each of
them being controlled by an instruction in the VLIW, one
5-slot functional unit, or combinations of them. In all these
situations, the RFU may use all 10 read and 5 write ports of
the register file in a single cycle.

In order to use the RFU, a kernel of new instructions is
needed. This kernel constitutes the extension of the Tri-
Media/CPU64 instruction set architecture we propose. A
hardwired Configuration Unit which manages the reconfig-
uration of the raw hardware is associated to the RFU, as it
is depicted in Figure 7. Generally speaking, the reconfigu-
ration of the RFU is performed under the command of the
SET instruction, while EXECUTE instructions launch the op-
erations to be performed by the computing resources config-
ured on the raw hardware [17]. In this way, the execution of
an RFU-mapped operation requires two basic stages: a SET
stage and an EXECUTE stage. A FETCH instruction could be
used to load FPGA configuration information from Register
File into a Configuration Cache.

Let us assume that multiple configurations can be stored
in the configuration cache. By issuing a SET instruction, the
configuration information mentioned by the first argument
of SET is transferred from configuration cache into FPGA
configuration memory3 at a location specified by the sec-
ond argument of SET. In this way, a flexible FPGA recon-

3If the FPGA had been a multiple-context device, an ACTIVATE in-
struction would have swapped the current configuration.
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RAW HARDWARE

CONFIG.
EXECUTE

RECONFIGURABLE FUNCTIONAL UNIT (FPGA)

Configuring
Resources (Facilities)

Figure 7. The proposed architectural exten-
sion for TriMedia/CPU64 VLIW core.

figuration pattern is supported by the proposed architectural
extension.

The user is given a set of EXECUTE instructions, which
encompasses different operation patterns: single- or multi-
slot operations, operations with an immediate argument,
etc. It is the responsibility of the user to choose the appro-
priate EXECUTE instruction corresponding to the pattern of
the operation to be executed. At the source code level, this
may be done by setting up an alias, as it is described sub-
sequently. Since the EXECUTE instructions are executed on
the RFU with no checking of the configuration, it is still the
responsibility of the user to perform the configuration man-
agement. More precisely, we provide no architectural sup-
port for such management; this task should be performed
by the user in software. Since such management is outside
the scope of the paper, we will not go into details.

For the semantics of an operation performed by a RFU-
configured computing facility, its latency, recovery, and slot
assignment are all user-definable, the source code of the ap-
plication should contain information to augment the Ma-
chine Description File [18]. Such information will be used
by the scheduler to schedule the newly defined operations.
Assuming a user-defined IDCT, a way to specify such in-
formation is to annotate the source code, as follows:

.alias IDCT EXEC 3 ; specifies the IDCT alias
; (EXECUTE 3 is a double-slot
; operation with two inputs and
; two outputs)

.latency IDCT 7 ; specifies the IDCT latency

.recovery IDCT 2 ; specifies the IDCT recovery

.slot IDCT 1+2 ; specifies the slot assignment
; of the IDCT instruction

In a similar way, the user can define as many RFU-related
instructions as he/she wants. Since a single EXECUTE in-
struction may be used to specify different operations, mul-
tiple aliases for such instruction are possible.

4



In the subsequent experiment, we will define a sin-
gle RFU-related operation which computes an 8-point 1-D
IDCT. We will present implementation issues of the 1-D
IDCT computing facility on the FPGA, and will evaluate
the computing performance of an 8� 8 IDCT.

4. Experimental results

In order to determine the potential impact on perfor-
mance provided by the reconfigurable core, we will con-
sider an 8 � 8 IDCT application as benchmark. The RFU
is to be configured at application load-time, i.e., a burst of
FETCH instructions followed by a SET instruction are sched-
uled on the top of the program code of the application. As
we already mentioned, we will use an ACEX 1K FPGA
from Altera as experimental platform for the reconfigurable
core.

In the current implementation of the 2-D IDCT on the
standard TriMedia/CPU64 architecture, all computations
are done with 16-bit values, and make intense use of SIMD-
style operations. The 8�8 matrix is stored in sixteen 64-bit
words, each containing a half row of four 16-bit elements.
Therefore, four 16-bit elements can be processed in paral-
lel by a single word-wide operation. Next to that, being a
5-issue slot VLIW processor, TriMedia/CPU64 can execute
5 such operations per clock cycle.

This strategy is used for both the horizontal and verti-
cal IDCTs. First, eight 1-D IDCTs (two SIMD 1-D IDCTs)
are computed using the modified ‘Loeffler’ algorithm [15].
Then, the transpose of the 8 � 8 matrix is performed by
a transpose unit which covers a double issue slot. Such a
unit can generate the upper respectively lower two words
of a transposed 4 � 4 matrix in one cycle. Therefore, the
8 � 8 matrix transpose is computed in eight basic opera-
tions. Finally, eight 1-D IDCTs (two SIMD 1-D IDCTs) are
computed with the results generated by the transposition.
Following the described procedure, a complete 2-D IDCT
including all overheads (mostly composed of load and store
operations) can be performed in 56 cycles [10].

Since the standard TriMedia provides a good support
for transposition and matrix storage, we expect to get lit-
tle benefit if we configure the entire 2-D IDCT into FPGA.
Our goal is to balance the cost of storing the intermediate
2-D IDCT results into an FPGA-resident transpose matrix
memory against obtaining free slots into TriMedia. Conse-
quently, in our implementation on the extended TriMedia,
we configure only an 1-D IDCT 2-slot computing resource
on the RFU. By launching an 1-D IDCT super-operation
having two 64-bit inputs and two 64-bit outputs, an 8-point
1-D IDCT is computed on eight 16-bit values. To calculate
the 2-D IDCT, eight 1-D IDCT are firstly computed. Then a
transpose is performed on the 8�8 data matrix using TriMe-
dia native byte shuffle operations. Finally, eight 1-D IDCT

are again computed. This execution scenario is presented in
Figure 8.

Eight
FPGA−config.

1−D IDCT
operations

8x8 matrix
transposition

Eight
FPGA−config.

1−D IDCT
operations

8x8 input data 8x8 output data

Figure 8. The computing scenario of
8� 8 IDCT on extended TriMedia.

Let us assume a pipelined FPGA implementation of
1-D IDCT having a latency of 18 cycles4, and a recovery
of 1 which means that the FPGA clock frequency is equal
with the TriMedia clock frequency. Unfortunately, such an
FPGA clock cycle is prohibited for the FPGA we consid-
ered. The current TriMedia clock frequency is greater than
200 MHz, while the maximum allowable clock frequency
for ACEX 1K is 180 MHz. Therefore, an 1-D IDCT hy-
pothetical implementation having a recovery of 1 is not a
realistic scenario. A recovery of 2 or more is mandatory. In
the sequel, we will assume a recovery of 2 for 1-D IDCT
and a 200 MHz TriMedia. This implies that the pipelined
implementation of 1-D IDCT will work with a clock fre-
quency of 100 MHz.

4.1. Implementation issues of the 1-D IDCT

Referring again to Section 2, and to Figures 1, 3, and
4, since the 1-D IDCT requires 14 multiplications, an ef-
ficient implementation of each multiplication is of crucial
importance. For all multiplications, the multiplicand is a
16-bit signed integer represented in 2’s complement nota-
tion, while the multiplier is a positive integer constant of 15
bits or less. A general multiplication scheme for which both
multiplicand and multiplier are unknown at the implemen-
tation time exhibits the largest flexibility at the expenses
of higher latency and larger area. If one of the operands
is known at the implementation time, the flexibility of the
general scheme becomes useless, and a customized imple-
mentation of the scheme will lead to an improved latency
and area. A scheme which is optimized against one of the
operands is referred to as multiplication-by-constant. Since
such a scheme is more appropriate for our application, we
will use it subsequently.

To implement the multiplication-by-constant scheme,
we built a partial product matrix, where only the rows cor-
responding to a ‘1’ in the multiplier are filled in. Then,

4As a fully combinatorial implementation of 1-D IDCT was found to
have a delay which corresponds to 15-20 cycles at this clock rate, the as-
sumption is realistic.
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reduction schemes which fit into a pipeline stage running at
100 MHz are sought. It should be emphasized that a reduc-
tion algorithm which is optimum on a certain FPGA family
may not be appropriate for a different FPGA family.

In connection with the partial product matrix, measured
performances of several reduction modules for ACEX 1K
are presented in Table 1. All the values in the table cor-
respond to synchronous designs, i.e., both inputs and out-
puts are registered. The estimations have been obtained
by compiling VHDL source codes with Leonardo Spec-
trum™, followed by a place and route procedure performed
by MAX+PLUS II™. We would like to mention that al-
though the figures typed in italics are generated by the soft-
ware tools, they do not have real support, as the maximum
operating frequency for the ACEX 1K is 180 MHz. The
following settings of the software tools have been used:
(1) Leonardo-Spectrum™: Lock LCELLs, Map Cascades,
Extended Optimization Effort, Optimize for Delay, Hierar-
chy: Flatten, Add I/O Pads; (2) MaxPlus-II: WYSIWYG,
Optimize = 10 (Speed); (3) MaxPlus-II: FAST, Optimize =
10 (Speed).

In order to implement an IDCT at 100 MHz, reduction
modules which can run at 100 MHz or more should be con-
sidered. These modules are summarized below:

• Horizontal reductions of two, three, or four 16-bit lines
to one line (Fig. 9 – a).

• Horizontal reduction of only two 30-bit lines to one
line (Fig. 9 – b).

• Vertical reductions of three or four 7-bit columns to
one line (Fig. 9 – c).

• Vertical reductions of six 5- or 6-bit columns to one
line (Fig. 9 – d).

It should be mentioned here that Dadda population counters
[19] of 3 or 4 bits can be implemented in only one logic
level, i.e., with a delay of 0:6 ns [16] with two, respectively
three LUTs. Also, Dadda counters of 5 or 6 bits can be im-
plemented in two cascaded logic levels which exhibit a total
delay of 1:2 ns, with seven LUTs. Although Dadda counters
could theoretically be used as a reduction technique work-
ing at the same frequency with TriMedia, i.e., minimum 200
MHz, such an approach is limited by the maximum operat-
ing frequency of the ACEX 1K FPGAs: 180 MHz.

Reduction modules which can run at 100MHz have been
determined. Now we can start the implementation of each
multiplication. We will present only the two most diffi-
cult examples: multiplications by C 0

0
= 5a82h which corre-

sponds to the
p

1=2 block, and C 0

1
= 58c5h, both of them

belonging to the critical path of the modified ‘Loeffler’ al-
gorithm. The number format is 2’s complement fractional
and the length of the word is 16 bit. In this way, only the
most significant 16 bits of the product have to be stored.

Table 1. Performances of several reduction
modules for ACEX 1K Speed Grade �1.

Performance
Reduction module fmax – MHz

L
eo

na
rd

o-
Sp

ec
tr

um
(1

)

M
ax

Pl
us

-I
I

W
Y

SI
W

Y
G

(2
)

M
ax

Pl
us

-I
I

FA
ST

(3
)

Two-operand 136 140 140
Three-operand 16-bit 104 107 117
Four-operand adder 104 103 109
Five-operand 84 81 81
Six-operand 84 76 76

Two-operand 24-bit 112 114 114
Three-operand adder 89 94 94
Four-operand 89 86 90

Two-operand 28-bit 102 103 103
Three-operand adder 83 85 83
Four-operand 83 77 81

Two-operand 30-bit 98 102 102
Three-operand adder 88 93 91

Five-operand 3-bit 108 147 138
Six-operand adder 108 131 121

Seven-operand 108 128 116

Five-operand 4-bit 105 126 113
Six-operand adder 105 126 107

Seven-operand 105 111 114

Five-operand 6-bit 101 113 107
Six-operand adder 101 97 105

Seven-operand 101 94 97

Three inputs Dadda 231 250 250
Four inputs population 228 250 250
Five inputs counter 155 175 169
Six inputs 155 188 188

The partial product matrix and the selected reduction
modules and steps for multiplication by the constant C 0

0
are

presented in Figure 10. In the first step, the partial product
matrix is built5. Then, reductions on the modules specified
by the shaded areas are performed. The first stage generates
four binary numbers of different lengths result, which are
reduced to one row in the second stage. Therefore, a mul-
tiplication by the constant C 0

0
is performed in two pipeline

stages.
The partial product matrix and the selected reduction

modules and steps for multiplication by the constant C 0

1
are

5‘s’ represents the sign-bit.
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Figure 9. 100 MHz reduction modules on
ACEX 1K.

presented in Figure 11. The reduction is performed in a
horizontal way, two lines at a stage. Therefore, a multipli-
cation by the constant C 0

1
is performed in three stages. The

multiplication by the constant C 0

1
proved too difficult to be

implemented in two stages only.
As a general rule, a horizontal reduction module con-

sumes a lower area than a vertical reduction module of the
same size. This situation occurs because a horizontal reduc-
tion module makes intensively use of the carry chain, as op-
posed to the vertical reduction module. A second observa-
tion is that the critical path of the 1-D IDCT is located on the
odd part of the modified ‘Loeffler’ algorithm. Once the mul-
tiplication by constantC 0

1
is performed in three stages, there

is no gain in performance to implement the other three mul-
tiplications, i.e., by constants S 0

1
, C 0

3
, S0

3
, in less than three

stages. Therefore, the multiplications by the constants S 0

1
,
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Figure 10. The partial product matrix and the
selected reduction steps for multiplication by
the constant C 0
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Figure 11. The partial product matrix and the
selected reduction steps for multiplication by
the constant C 0

1

C 0

3
, S0

3
are implemented in three stages also, even though

they may allow for an efficient (timing) implementation in
two stages, too (however, at the expense of a slightly larger
area). The same considerations apply for multiplications by
the constants C 0

6
and S 0

6
, as both of them are not located on

the critical path. The sketch of the 1-D IDCT pipeline is
depicted in Figure 12.

The latency of the 1-D IDCT is composed of:

• one TriMedia cycle for reading the input operands
from the register file into the input flip-flops of the 1-
D IDCT computing resource;

• two FPGA cycles for computing the multiplication by
constant C 0

0
;

• one FPGA cycle for computing the additions in the
stage II of the algorithm;

• three FPGA cycles for computing the multiplication by
constant C 0

1
;
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Figure 12. The 1-D IDCT pipeline

• one FPGA cycle for computing the additions in the last
stage of the transform;

• one TriMedia cycle for writing back the results from
the output flip-flops of the 1-D IDCT computing re-
source into the register file.

Therefore, the latency of the 8-point 1-D IDCT operation is
1 + (2 + 1 + 3 + 1) � 2 + 1 = 16 TriMedia cycles. We
evaluated that 1-D IDCT uses 42% of an ACEX EP1K100
device and 257 I/O pins.

Finally, we would like to summarize the design tools:

• ModelSim™ SE/EE VHDL from Model Technology,
version 54.b, revision 2000.06, has been used for sim-
ulating the VHDL source code.

• Leonardo-Spectrum™ from Exemplar, version
v2000.1a2.75, has been used to generate the EDIF
netlist file.

• MAX+PLUS II™ version 9.64 has been used to place
and route the design available as an EDIF netlist file,
and simulate the final mapped design.

4.2. 2-D IDCT implementation under the extended
TriMedia/CPU64

As mentioned, an 1-D IDCT with a latency of 16 and
a recovery of 2 is configured on the RFU at application
load-time. We decided to assign the IDCT operation to the
slot pair 1+2. After eight 1-D IDCT instructions, a burst
of eight TRANSPOSE super-operations which computes the
transpose of the 8 � 8 matrix are scheduled on the slot
pairs 1+2, or 3+4. Then, eight 1-D IDCT instructions com-
plete the 2-D IDCT. Before and after each 2-D IDCT, LOAD
and STORE operations should be issued in order to fetch
the input operands from main memory into register file,
and store the results back into memory, respectively. The

code was manually scheduled, and the result is presented in
Figure 13.

In order to keep the pipeline full, back-to-back 1-D IDCT
operation is needed. That is, a new 1-D IDCT instruction
has to be issued every two cycles. Since true dependencies
forbid issuing the last eight 1-D IDCTs of a 2-D IDCT so
that to fulfill back-to-back requirement, the 2-D IDCTs are
processed in chunks of two, in an interleaved fashion. A
number of 2 � 16 = 32 registers are needed for this inter-
leaved processing pattern. The computational performance
of 2-D IDCT exhibits a throughput of 1=32 IDCT/cycle and
a latency of 42 cycles. It is worth mentioning that the ma-
chine is well balanced, none of the very-large instructions
being fully occupied:

• LOAD or STORE operations are issued every other clock
cycle, so the slots 4 and 5 are 50% used.

• IDCT super-operations are issued on slots 1 + 2 every
other clock cycle.

• The transpose super-operations are also issued on ev-
ery other clock cycle, and the issuing slots can be either
1 + 2 or 3 + 4.

In this way, there are plenty of free slots which can be uti-
lized for other purposes. Consequently, the announced fig-
ures represent the lower bound of the performance improve-
ment which can be achieved on extended TriMedia.

In Table 2 we compare the performances of three
2-D IDCT implementations: on standard TriMedia [10],
on FPGA-augmented TriMedia and on FPGA [20]. The
2-D IDCT implementation on standard TriMedia exhibits
the lowest throughput (3.57M IDCT/sec), while the high-
est throughput (6.25M IDCT/sec) is achieved for the imple-
mentation under augmented TriMedia. That is, an improve-
ment of 40% over standard TriMedia and 30% over FPGA
has been obtained on extended TriMedia.
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Figure 13. Schedule result for a 1-D IDCT having the latency of 16 and recovery of 2 (LD stands for
LOAD, RD for read, WR for write, ST for STORE, and T for TRANSPOSE).

Table 2. 2-D IDCT performance figures for three 2-D IDCT implementations.

Implementation FPGA family Throughput Latency FPGA
IDCT/cycle IDCT/sec cycles ns utilization

Standard TriMedia n/a 1/56 3.57 M 56 280 n/a
FPGA-augmented TriMedia EP1K100 (Altera) 1/32 6.25 M 42 210 42 %
FPGA alone XCV600 (Xilinx) n/a 4.09� 4.27 M n/a 468� 489 88� 95 %

Finally, we would like to mention that in order to
deal with the particularities of implementing computing re-
sources with a different (lower) clock frequency than the
TriMedia host, the scheduler should be changed to consider
two additional requirements:

1. When the RFU pipeline is empty, scheduling a new
RFU instruction can be done at every TriMedia cycle.

2. When the RFU pipeline is not empty, scheduling a new
RFU instruction can be done only at any other TriMe-
dia cycle.

5. Conclusions and future work

We have proposed an architectural extension for Tri-
Media/CPU64 which encompasses a reconfigurable func-
tional unit and the associated instructions. On an FPGA-
augmented TriMedia with three new FETCH, SET, and
EXECUTE instructions, we obtained a performance improve-
ment of 40% over standard TriMedia for an 8� 8 IDCT ap-

plication. 42% of an EP1K100 device has been used to im-
plement the 1-D IDCT computing resource. As future work,
we intend to define the complete architecture of the FPGA-
extended TriMedia, consider more applications and opera-
tions for RFU, and evaluate the performance over the entire
set of TriMedia dedicated multimedia-benchmarks using a
cycle-accurate simulator.
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