
MPEG-compliant Entropy Decoding on FPGA-augmented TriMedia/CPU64

Mihai Simayz Sorin Cotofanay Stamatis Vassiliadisy Jos T.J. van Eijndhovenz Kees Vissersx
yDelft University of Technology, Delft, The Netherlands

zPhilips Research, Eindhoven, The Netherlands
xTriMedia Technologies, Inc., Milpitas, California, U.S.A.

E-mail: M.Sima@et.tudelft.nl

Abstract

The paper presents a Design Space Exploration (DSE)
experiment which has been carried out in order to deter-
mine the optimum FPGA–based Variable-Length Decoder
(VLD) computing resource and its associated instructions,
with respect to an entropy decoding task which is to be exe-
cuted on the FPGA-augmented TriMedia/CPU64 processor.
We first outline the extension of the TriMedia/CPU64 archi-
tecture, which consists of an FPGA–based Reconfigurable
Functional Unit (RFU) and the associated generic instruc-
tions. Then we address entropy decoding and propose a
strategy to partially break the data dependency related to
variable-length decoding. Three VLDs (VLD-1, VLD-2,
VLD-3) instructions which can return 1, 2, or 3 symbols,
respectively, are subsequently analyzed. After completing
the DSE, we determined that VLD-2 instruction leads to
the most efficient entropy decoding in terms of instruction
cycles and FPGA area. The FPGA–based implementation
of the computing resource associated to VLD-2 instruc-
tion is subsequently presented. When mapped on an ACEX
EP1K100 FPGA from Altera, VLD-2 exhibits a latency of
8 TriMedia cycles, and uses all the Electronic Array Blocks
and 51% of the logic cells of the device. The simulation re-
sults indicate that the VLD-2–based entropy decoder is 43%
faster than its pure software counterpart.

1 Introduction

A common issue addressed by computer architects is the
range of performance improvements that may be achieved
by augmenting a general purpose processor with a recon-
figurable core [1, 2, 3]. The basic idea of this approach
is to take advantage of both the general purpose proces-
sor capability to achieve medium performance for a large
class of applications, and FPGA flexibility to implement
application-specific computations. An instance of such
FPGA-extended processor is the TriMedia/CPU64+FPGA

hybrid [4, 5], on which the user is given the freedom to de-
fine and use any computing facility subject to FPGA size
and TriMedia/CPU64 organization. Several applications
have been implemented on this hybrid. When the appli-
cation exhibits data parallelism, a significant improvement
over TriMedia/CPU64 alone have been achieved on FPGA-
augmented TriMedia/CPU64 [4]. However, the improve-
ment is rather low when data parallelism is not available, in
particular for an entropy decoding task [5].

Entropy decoding consists of Variable-Length Decoding
(VLD) [6, 7] followed by a Run-Length Decoding (RLD),
from which the VLD is a strictly sequential task. Due to
data dependency, the VLD is an intricate function on TriMe-
dia, since a VLIW architecture must benefit from instruc-
tion level parallelism in order to be efficient. For this reason,
VLD is an ideal candidate to benefit from reconfigurable
hardware support. We have already proposed an FPGA–
based MPEG-1 compliant VLD-1 computing resource and
its associated instruction which returns one symbol [5].

In this paper, we demonstrate that significant improve-
ments over the initial solution are possible with respect
to entropy decoding, if a VLD instruction which can re-
turn more than one symbol is considered. The main idea
in breaking the dependency between successive codewords
is to determine therun-level pair, as well as thecode-
length for thecurrent codeword, and only thecode-length
for the first, second, ...,next codewords during the same
VLD call. Simultaneously, therun-level pairs for the in-
completely decoded first, second, ...,previous codewords
are computed. With the exception of a firing-up call, trully
multiple-symbol decoding is achieved for all subsequent
VLD calls.

After presenting the implementation of an MPEG-2
compliant VLD-1, VLD-2 and VLD-3 computing resources
which can return two or three symbols, respectively, and
their associated instructions are analized. The experimen-
tal results reveal that VLD-2 leads to the most efficient en-
tropy decoding in terms of instruction cycles and FPGA
area. When mapped on an ACEX EP1K100 FPGA from

COS 
Proceedings of the FCCM 2002, Napa Valley, California, April 21-24



Altera, VLD-2 computing resource exhibits a latency of 8
TriMedia cycles, and uses all the Electronic Array Blocks
and 51% of the logic cells of the device. The simulations
carried out on a TriMedia/CPU64 cycle accurate simulator
indicate that VLD-2–based entropy decoder is 22% faster
than our initial solution [5] at a slightly higher reconfig-
urable hardware cost, and 43% faster than the pure soft-
ware solution [8]. Given the fact that TriMedia/CPU64 is
a 5 issue-slot VLIW processor with 64-bit datapaths and
a very rich multimedia instruction set, such an improve-
ment within the target media processing domain indicates
that the hybrid TriMedia/CPU64 + FPGA is a feasible
approach with respect to entropy decoding.

Summarizing, the paper contributions are:

• A strategy to partially break the data dependency re-
lated to variable-length decoding.

• An FPGA–based MPEG-2–compliant VLD-1.

• An FPGA–based VLD-2 computing resource opti-
mized with respect to the entropy decoding task, and
in terms of instruction cycles and FPGA area.

• The syntax and the semantics of the VLD-2 custom
operation.

• The VLD-2 implementation on Altera’s ACEX
EP1K100 FPGA.

• A high performance entropy decoder implementation
on FPGA-augmented TriMedia/CPU64.

The paper is organized as follows. For background pur-
poses, we outline several issues concerning MPEG com-
pression standard, the architectures of the FPGA core,
and the FPGA-augmented TriMedia/CPU64 in Section 2.
MPEG-2–compliant VLD-1, VLD-2, VLD-3 implementa-
tions on FPGA are described in Section 3. VLD-x–based
entropy decoders, wherex � 1, are discussed in Section
4. The experimental framework and results are presented in
Section 5. The final section completes the paper with some
conclusions and closing remarks.

2 Background

The MPEG standard [7, 9] uses a large number of com-
pression techniques to decrease the amount of data. Data
compression is the reduction of redundancy in data repre-
sentation, carried out for decreasing data storage require-
ments and data communication costs. A typical video codec
system is presented in Figure 1 [6, 7]. The lossy source
coder performs filtering, transformation (such as Discrete
Cosine Transform (DCT), subband decomposition, or dif-
ferential pulse-code modulation), quantization, etc. The
output of the source coder still exhibits various kinds of sta-
tistical dependencies; these are removed by the (lossless)
entropy coder.

Decoder
Entropy
LosslessLossless

Entropy
Coder

EncoderDigital
video

in Lossy
Source
Coder

Digital
video
out

Decoder
Source

Decoder

Channel ‘‘Lossy’’

Figure 1. A generic video codec.

In MPEG, the couple DCT + Quantization is used as
a lossy coding technique. The DCT algorithm processes
8 � 8 blocks of pixels, and outputs8 � 8 blocks of coef-
ficients representing the amplitudes of 64 spatial frequen-
cies. Since the human eye cannot readily perceive high spa-
tial frequency activity, a quantization step is then carried
out. As a result, a lot of elements of the8 � 8 matrix be-
come zero. Then, a zig-zag operation transforms the ma-
trix into a vector of coefficients which contains large series
of zeros. This vector is further compressed by an Entropy
Coder which consists of a Run-Length Coder (RLC) and a
Variable-Length Coder (VLC). The RLC represents consec-
utive zeros by their run lengths; thus the number of samples
is reduced. The RLC output data are composite words, also
referred to assource symbols, which describe arun-level
pair. Therun-value indicates the number of zeros by which
a (non-zero) DCT-coefficient is preceeded. Thelevel-value
represents the value of the DCT coefficient. When all the re-
maining coefficients in a vector are zero, they are all coded
by the special symbolend-of-block. Variable length coding
is a mapping process between source symbols andvariable
length codewords according to a set of tables defined by
the standard. Not every run-level pair has a variable length
codeword to represent it, only the frequent used ones do.
For those rare combinations, anescapecode can be given.
After an escapecode, the run- and level-value are coded
using fixed length codes.

In order to achieve maximum compression, the coded
data does not contain specific guard bits assigned to sepa-
rate between two consecutive codewords. As a result, the
decoding procedure must recognize the code length as well
as the symbol itself. Before decoding the next symbol, the
input data string has to be shifted by a number of bits equal
to the decoded code length. These are recursive operations
that cannot be pipelined.

Subsequently, we will focus on the entropy decoding,
i.e., on the operation inverse to entropy coding. We
will briefly present some theoretical issues connected with
variable-length decoding and run-length decoding.

2.1 Entropy Decoder

In MPEG, the entropy decoder consists of a Variable-
Length Decoder (VLD) followed by a Run-Length Decoder
(RLD). The input to the VLD is the incoming bit stream,
and the output is the decoded symbols. Generally speaking,



a VLD contains a look-up table which receives the variable-
length code itself as the address [10], as depicted in Figure
2. The decoded symbol (run/levelpair orend-of-block) and
the codeword length are generated in response to that ad-
dress. In order to determine the starting position of the next
codeword, the code-length is added to the previous code-
length sum. Since the longest codeword excluding Escape
has 17 bits, the LUT size reaches= 2

17 words for a direct
mapping of all possible codewords.

Accumulator

Code−Length

Level

Run

Look−up
Table

B
ar

re
l−

sh
ift

er

MPEG−compliant string

acc_code_L

Figure 2. Variable-length decoding principle.

Conceptually, for eachrun/level pair returned by the
VLD, the RLD outputs the number of zeros specified by
the run value and then pass thelevel through. In a pro-
grammable processor–based platform, a way to optimize
this process is to fill in an empty vector withlevel values
at positions defined byrun values, as depicted in Figure
3. This common strategy has been widely used in previous
work [11, 12, 5] and will be used subsequently, too.

L1 L2

0 1 2 3 4 5 6 7 8 9 10 63

R0=0
R1=3 R2=5

nz_coeff_pos_init = −1

nz_coeff_pos_0 = nz_coeff_pos_init+R0+1 = 0

nz_coeff_pos_1 = nz_coeff_pos_0+R1+1 = 4

nz_coeff_pos_2 = nz_coeff_pos_1+R2+1 = 10

L0

Figure 3. Run-length decoding principle.

In the figure, the position of a non-zero coefficient,
nz coeff pos , is computed by adding therun value, R,
together with an ‘1’ bit to the position of the previous non-
zero coefficient.

The next subsection will outline the architecture of the
FPGA we used as an experimental reconfigurable core.

2.2 The FPGA architecture

Field-Programmable Gate Arrays (FPGA) [13] are de-
vices which can be configuredin the field by the end user. In
a general view, an FPGA is composed of two constituents:

Raw Hardware andConfiguration Memory. The function
performed by the raw hardware is defined by the informa-
tion stored into the configuration memory. In the sequel,
we will assume that the architecture of the raw hardware is
identical to that of an ACEX 1K device from Altera [14].
Briefly, an ACEX 1K device contains an array of Logic
Cells, each including a 4-input Look-Up Table, a number
of Embedded Array Blocks (EAB), each EAB being ac-
tually a RAM block with 8 inputs and 16 outputs, and an
interconnection network. In order to have a general view,
we mention that the logic capacity of the ACEX 1K fam-
ily ranges from 576 logic cells and 3 EABs for an EP1K10
device to 4992 logic cells and 12 EABs for an EP1K100 de-
vice. More details regarding the architecture and operating
modes of ACEX 1K devices can be found in [14].

We conclude this section with a review on the architec-
tural extension for the TriMedia/CPU64.

2.3 Architectural extension for TriMedia/CPU64

TriMedia/CPU64 is a 64-bit 5 issue-slot VLIW core,
launching a long instruction every clock cycle [15]. It has a
uniform 64-bit wordsize through all functional units, reg-
ister file, load/store units, on-chip highway and external
memory. Each of the five operations in a single VLIW in-
struction can in principle read two register arguments and
write one register result every clock cycle. The architecture
supports subword parallelism and is optimized with respect
to media-processing. For example, operations on eight 8-
bit unsigned integers (vec64ub ), or on four 16-bit signed
integers (vec64sh ) are possible. The TriMedia/CPU64
VLIW core also supports double-slot operations, or super-
operations. Such a super-operation occupies two adjacent
slots in the VLIW instruction, and maps to a double-width
functional unit. This way, operations with more than 2 ar-
guments and one result are possible.

As described in [4], TriMedia/CPU64 processor can be
augmented with a Reconfigurable Functional Unit (RFU)
which consists mainly of an FPGA core. The RFU is em-
bedded into the TriMedia as any other hardwired functional
unit, i.e., it receives instructions from the instruction de-
coder, reads its input arguments from and writes the com-
puted values back to the register file. In order to use the
RFU, new generic instructions are provided [4]:SET, and
EXECUTE. Loading a new configuration into RFU is per-
formed under the command of aSET instruction, while
EXECUTE instructions launch the operations performed by
the computing resources which are already configured on
the raw hardware. Thus, the execution of an RFU-mapped
operation requires two basic stages:SET, andEXECUTE.

In the next section, three FPGA–based variable-length
decoders which can return 1, 2, respectively 3 symbols per
call are described.



Table 1. The partitioning of the VLC codes (Table B14) into groups and classes [5].
Name of the group No. of symbols Class prefix Code length Group header Effective EAB

in the class address length

NI-1st coeff. Group 0 2 1 1 + s – n.a.

End-of-block 1 10 2 – n.a.
NI-subsequent/I-AC coeff. Group 0 2 11 2 + s – n.a.

Escape MPEG-2/(MPEG-1) 1 0000 01 6 + 18/(14,22) – n.a.
2 011 3 + s 3
4 010 4 + s 4

Group 1 4 0011 5 + s 5
2 0010 1 5 + s 0 5

(implemented 8 0001 6 + s 6
into EABs) 8 0000 1 7 + s 7

16 0010 0 8 + s 8
Group 2 16 0000 001 10 + s 5

(implemented 32 0000 0001 12 + s 0000 00 7
into EABs) 32 0000 0000 1 13 + s 8

Group 3 32 0000 0000 01 14 + s 6
(implemented 32 0000 0000 001 15 + s 0000 0000 0 7
into EABs) 32 0000 0000 0001 16 + s 8

3 Variable-length decoders

Due to data dependency, the VLD is an intricate function
on TriMedia, since a VLIW architecture must benefit from
instruction level parallelism in order to be efficient. For this
reason, VLD is an ideal candidate to benefit from recon-
figurable hardware support. In this section, we will first
present an MPEG-2 compliant VLD which can return one
symbol per call. Then, we will propose a strategy to break
the data dependency between successive symbols, and pro-
pose VLD-2 and VLD-3 computing resources which can
return 2, respectively 3 symbols per call.

3.1 VLD-1

VLD-1 is an FPGA–based VLD which can decode one
symbol per execution. Since the latency of an RFU-
configured computing resource should be known at compile
time, only a constant-output-rate architecture [10, 16, 6] can
be considered for VLD-1. An FPGA–based VLD-1 which
is only MPEG-1 compliant (i.e., only Tables B12, B13, B14
[17] are implemented) has been presented briefly in [5].
The main idea of this design is to compute therun-level
pair by looking-up into the (8-input) EABs of an ACEX 1K
FPGA, while thecode-lengthand control information are
computed into FPGA logic cells. For this reason, the B14
table has been partitioned into Groups and Classes, each
Class being defined by aprefix (Table 1). By bypassing the
header which is common to all codewords in the Group, the
number of remaining bits to be decoded, and, therefore, the
effective address length for EAB, for each and every code-

word is 8 or less. Six EABs are needed to implement the
Groups 1, 2, and 3.

In order to cover all instances of the MPEG-2 standard
[17] regarding DCT coefficient decoding, we further pro-
pose a strategy to implement the B15 table. The partitioning
of the B15 table in groups and classes is presented in Ta-
ble 2. The slightly higher difficulty of having a significant
number of codewords starting with a ‘1’ has been solved
as follows: the codewords starting with ”10” or ”01” have
been allocated to Group 0, while the codewords starting
with ”00” or ”11” have been allocated to Group 1. In this
way, each class in the Group 1 can be uniquely identified by
the second most-significant bit. Therefore, the first most-
significant bit, which represent theheader of the Group 1,
can be bypassed as in the Table B14 case.

A combinatorial circuit has been configured on FPGA
which can compute the code-length of the symbol. By
means of EABs, therun andlevel for each and every group
were decoded in parallel, as the valid symbol would be-
long to that group. Then, a selection of the proper run
and level pair is carried out according to the code-length,
as depicted in Figure 4 (The first bit of the VLC string
is labeled as bit No. 0.). The Figure presents only the
VLD-1 core, which means that specifying the decoding pa-
rametersmpeg-2/mpeg-1, intra/non-intra, intra-vlc-format,
luma/chroma, dc/ac, is left open for optimizations at the en-
tropy decoder level.

It should be mentioned that all the groups 1, 2, and 3 of
both tables B14 and B15 fit into a single ACEX EP1K100
FPGA. All 12 EABs and 22% of the logic cells of an ACEX
EP1K100 device have been used to implement the MPEG-



Table 2. The partitioning of the VLC codes (Table B15) into groups and classes.
Name of the group No. of symbols Class prefix Code length Group header Effective EAB

in the class address length

End-of-block 1 0110 4 – n.a.
2 10 2 + s – n.a.

Group 0 2 010 3 + s – n.a.
2 0111 4 + s – n.a.

Escape MPEG-2 1 0000 01 6 + 18 – n.a.
4 0011 5 + s 5
2 0010 1 5 + s 5
8 0001 6 + s 0 6

Group 1 8 0000 1 7 + s 7
16 0010 0 8 + s 8
2 110 3 + s 3
4 1110 5 + s 5

(implemented 8 1111 0 7 + s 1 7
into EABs) 2 1111 100 7 + s 7

8 1111 11 8 + s 8
4 1111 101 8 + s 8
2 0000 0010 9 + s 4

Group 2 4 0000 0011 1 9 + s 4
4 0000 0011 0 10 + s 0000 00 5

(implemented 20 0000 0001 12 + s 7
into EABs) 24 0000 0000 1 13 + s 8

Group 3 32 0000 0000 01 14 + s 6
(implemented 32 0000 0000 001 15 + s 0000 0000 0 7
into EABs) 32 0000 0000 0001 16 + s 8

Escape

Group 0

decoder

3

18

Selection

MUX
6:1

Group
detector

and
code length
estimator

EOB

12

6

12

6

6

2 x EAB
Group 1 6

6

6

6

decoder

2 x EAB
Group 2

2 x EAB
Group 3

[6 ... 28]

[0 ... 2]

[1 ... 8]

8

8

[6 ... 13]

[9 ... 16]

8

12

[0 ... 11]

12

run

level

3

code_L

"decoder"

12

12

12

12

5

valid_decode

EOB

error

exit_flag

Controller

VLC string

Decoding
parameters

Figure 4. The VLD-1 core on FPGA – from [5].

2–compliant VLD-1. By simulation with Altera tools, we
found that the VLD-1 latency is equal to 7 TriMedia cycles.

Since the next variable-length codeword can be decoded
only after the current one has been decoded, VLD is a

strictly sequential task. Subsequently, we will propose a
strategy to increase the parallelism by breaking the ex-
plicit dependency between successive codewords, and will
present a variable-length decoder which can decode 2 sym-
bols per call.

3.2 VLD-2

Since VLD is a strictly sequential algorithm, trullytwo
codewords at a time can be achieved only if a huge look-
up table of28 + 28 = 56 inputs (256 word memory!) for
MPEG-1, and24 + 24 = 48 inputs (248 word memory!)
for MPEG-2 is employed. Even by excluding the ESCAPE
codes, a look-up memory with17 + 17 = 34 inputs, which
means234 = 16 Gwords is still needed! Such a large mem-
ory is impractical for the time being.

Several VLD architectures, which return two symbols
per execution, have been proposed. We will summarize
them subsequently:

• The main idea of the architecture proposed by Park
[18] is to find therun, level, and code-lengthof a
first symbol, then barrel-shift the VLC string accord-
ing to the code-length, and finally find therun, level,
and code-lengthof a subsequent symbol. Since a



barrel-shifter can be implemented on an ACEX 1K
FPGA only by means of cascaded multiplexers select-
ing fixed-size shifting by1; 2; 4; : : : , respectively, such
approach exhibits high latency and large raw hardware
utilization. Consequently, this architecture is not ap-
propriate for our case. However, if full-custom (ASIC)
implementation is addressed, such architectural solu-
tion might be reconsidered.

• The architectures described in [19], [20] employad-
vance computation techniques. For the first (most sig-
nificant) bit of the VLC string, the symbol is fully de-
coded, i.e.,run, level, andcode-lengthare determined.
In parallel, for all possible starting bit positions for the
next symbol,runs, levels, code-lengths are also gen-
erated. Finally, only a selection based on the codeword
length of the first decoded symbol is carried out. The
major drawback of this approach is the huge complex-
ity of the decoder, as decoding look-up tables have to
be provided for the first symbol, and also for all possi-
ble second symbols.

In order to overcome the drawbacks of the above men-
tioned architectures, we propose to decoderun, level, and
code-lengthof a first symbol, and to determine only the
code-length for the second symbol by means of advance
computation techniques. The computation of therun-level
pair of the second symbol is postponed to the next VLD
call. In parallel, therun-level pair of theprevious codeword
is determined. The complexity of the VLD-2 remains res-
onable low since only a small number of decoding look-up
tables have to be provided. The barrel-shifting is intended
to be carried out in software, by the TriMedia/CPU64 core.

Several aspects regarding the terminology have to be dis-
cussed. The codeword corresponding to the first (most sig-
nificant) bit of the VLC string will be referred to ascurrent
codeword. The second symbol will be referred to asnext
codeword, and a codeword whose code-length was deter-
mined during the previous call of VLD-2 will be referred to
asprevious codeword. The acronyms related to thecurrent
codeword get the suffixc , those related tonext codeword
get the suffix n, and those related to thepreviouscode-
word get the suffix p. Therefore, acronyms likerun c ,
level c , code L c , code L n, run p, level p, etc,
are considered as valid.

The FPGA–based implementation of the VLD-2 core
is presented in Figure 5. The same methodology used in
VLD 1 has been employed, i.e.,run and level for all the
Groups in the decoding tables are decoded in parallel, then
only a selection of the proper result is carried out. In order
to easily quit the entropy decoder calling routine once an
end-of-blockor an error has been detected for either of the
current or previous codeword, a global exit flag has been
provided.

6

12

6

12

6

12

6

12

6

12

6

12

Escape

Group 03

EOB

Group 1

decoder

"decoder"

2 x EAB

2 x EAB
Group 2

2 x EAB
Group 3

8

8

8

18
decoder

6

12

6

12

6

12

6

12

6

12

6

12

Escape

Group 03

EOB

Group 1

decoder

"decoder"

2 x EAB

2 x EAB
Group 2

2 x EAB
Group 3

8

8

8

18
decoder

5

5

5

5

5

5

Controller

Controller

VLC string − current, next

VLC string − previous

VLC string − current, next

VLC string − previous

Selection

MUX
6:1

Group
detector

and
code length
estimator

6

[6 ... 28]

[0 ... 2]

[1 ... 8]

[6 ... 13]

[9 ... 16]

12

[0 ... 11]

12

run_c

level_c

3

MUX
19:1

estimator
code length12

estimator
code length12

estimator
code length12

[2 ... 13]

[3 ... 14]

estimator
code length12

estimator
code length12

estimator
code length12

[17 ... 28]

[20 ... 31]

[24 ... 35]

[28 ... 39]

code_L_n

Selection

MUX
6:1

Group
detector

6

[6 ... 28]

[6 ... 13]

[1 ... 8]

[0 ... 2]

[9 ... 16]

12
level_p

run_p

312

[0 ... 11]

code_L_c
5

. .
 .

5

valid_decode_p

EOB_p

error_p

exit_flag_p

exit_flag

error_c

exit_flag_c

EOB_c

valid_decode_c

parameters
Decoding

Figure 5. The VLD-2 core on FPGA.

All 12 EABs and 51% of the logic cells of an ACEX
EP1K100 device have been used to implement VLD-2 em-
bedding either B14 or B15 table. To implement both ta-
bles, either two EP1K100 devices are needed, or a multiple-



context [21] EP1K100 should be available. Since there is no
need to simultaneously decode according to both B14 and
B15 tables, the multiple-context solution is preferred. By
simulation with Altera tools, we found that the VLD-2 la-
tency ranges between 7-8 TriMedia cycles, depending on
the computing of additional values which may prove useful
at the entropy decoding routine level, e.g.,nz coeff pos ,
end-of-macro-block , etc.

3.3 VLD-3

The VLD-2 principle is scalable and can be extended to
VLD-x (x � 3), subject to the FPGA size. In a VLD-
3, two next/previouscodewords are considered. Unfortu-
nately, VLD-x (x � 3) seems not to be feasible. In VLD-2,
the selection of the propercode L n can be completed in
about the same time withrun-level decoding for thecur-
rent andprevious codewords. In VLD-3, for example, the
computation of the code-lengths for thenext two codewords
is on the critical path. Therefore, longer latencies are to
be expected for VLD-x (x � 3), while VLD-2 has about
the same latency with VLD-1. There are also limitations
connected with TriMedia/CPU64 super-operation format,
which strongly discourages using VLD-x (x � 3), as we
will describe later, in Section 5.

In entropy decoding on FPGA-augmented TriMedia, the
VLD benefits from reconfigurable hardware support, while
the processor still carries out the inverse zig-zag and matrix
reconstruction, i.e., the RLD. In Section 4, we will describe
three entropy decoders on FPGA-augmented TriMedia.

4 Entropy decoders

Since the datapath width of TriMedia/CPU64 is 64 bit,
the MPEG-compliant string is downloaded into the TriMe-
dia core in chunks of 64 bits. Theaccumulated code length
variable, acc code L, represents the sum of the code-
lengths of the already decoded codewords. Before each
VLD call, the MPEG string has to be shiftedacc code L
positions in order to discard these codewords. After the
VLD returns,acc code L is incremented modulo-64 with
the code-length of the newly decoded codeword(s). This
way, a new chunk of 64 bits from the MPEG string is down-
loaded into TriMedia core on overflow.

4.1 VLD-1–based entropy decoder

The main idea in an FPGA-based solution is to replace
the awkward table look-ups of the pure software decoder
[12], by a single RFU call. In this subsection, we will con-
sider that a VLD computing resource which can decode one
symbol per execution (call) – the VLD-1 – is to be imple-
mented on FPGA. Thus, the entropy decoder includes calls

to VLD-1. The following stages can be discerned in the
implementation of the VLD-1–based entropy decoder:

1. Initializations .

2. VLD-1 call

3. Field extraction: run, level, code L, exit flag.

4. Updating the accumulated code-length:

acc code L+ = code L (modulo 64)

5. Exit if an exit condition (end-of-block, error, etc.) has
been encountered.

6. Run-length decoding(updatingnz coeff pos fol-
lowed up by filling-in the non-zero coefficient into the
8 � 8 matrix) and additional computations associ-
ated with MPEG (de-zig-zag, inverse quantization,
etc.).

7. Aligning the VLC string in order to bypass the al-
ready decoded bits.

8. Looping: GOTO step 2.

The Stage 6 –run-length decoding– can be folded into
the loop, such that loop pipelining is employed. In this way,
the run-level decoding for theprevious decoded symbol is
carried out simultaneously with variable-length decoding of
thecurrent symbol.

The VLD-2–based entropy decoder is a direct extension
of the VLD-1–based one. We will describe it subsequently.

4.2 VLD-2–based entropy decoder

The entropy decoder routine includes calls to VLD-2.
The following stages can be discerned in the implementa-
tion of the VLD-2–based entropy decoder:

1. Initializations .

2. VLD-2 call

3. Field extraction: run p, level p, code L n, run c,
level c, code L c, exit flag.

4. Updating the accumulated code-length:

acc code L+ = code L c (modulo 64)
5. Aligning of the VLC string in order to computeVLC

string - previous.

6. Updating the accumulated code-length:

acc code L+ = code L n (modulo 64)

7. Exit if an exit condition (end-of-block, error, etc.) has
been encountered.

8. Run-length decodingfor previoussymbol (updating
nz coeff pos p followed up by filling-in the non-
zero coefficient into the8� 8 matrix) and additional
computations associated with MPEG(de-zig-zag,
inverse quantization, etc.).



9. Run-length decoding for current symbol (updating
nz coeff pos c followed up by filling-in the non-
zero coefficient into the8� 8 matrix)and additional
computations associated with MPEG(de-zig-zag,
inverse quantization, etc.).

10. Aligning of the VLC string in order to computeVLC
string - current, next.

11. Looping: GOTO step 2.

Following the same strategy described in Subsection 4.1,
either the Stage 9 or both Stages 9 and 8 can be folded into
the loop. It can be easily observed that the complexity of
the entropy decoding loop is definitely higher than that of
its VLD-1–based counterpart. For this reason, the overhead
associated with firing-up the loop may become significant
and even cancel the efficiency provided by VLD-2. Which
folding strategy leads to shorter decoding time will be de-
termined by experiment.

4.3 VLD-3–based entropy decoder

VLD-2–based entropy decoder can be extended to an
VLD-x–based (x � 3) entropy decoder. Unfortunately,
issues related with TriMedia super-operation format limit
the utilization of a VLD-x (x � 3) computing resource.
Also, the overhead associated with firing-up the loop be-
comes larger and larger, which turns into a highly inefficient
VLD-x–based (x � 3) entropy decoder. We will come back
to these issues and present more details as well as experi-
mental figures regarding VLD-3–based entropy decoder in
Section 5.

With VLD-1, VLD-2, and VLD-3, different tests have
been carried out. We will present them subsequently along
with experimental results.

5 Experimental results

For all experiments described subsequently, the MPEG-
compliant bit string is assumed to be entirely resident into
the main memory. In this way, side effects associated with
bit string acquisition such as asynchronous interrupts, trash-
ing routines, or other operating system related tasks, do not
have to be counted. Moreover, saving the reconstructed
8 � 8 matrices into memory, as well as zeroing these ma-
tries in order to initialize a new entropy decoding task are
equally not considered. Since both procedures can be con-
sidered parts of adjacent tasks, such as IDCT, or motion
compensation, they are subject to further optimizations at
the complete MPEG decoder level. Thus, in our experi-
ments, the run-length decoder will overwrite the same8�8

matrices again and again. With these assumptions, the only

relevant metric is the number of the instruction cycles re-
quired to perform strictly entropy decoding. Therefore, the
main goal was to minimize this number.

Two experiment classes have been considered. In the
first class, VLD-1, VLD-2 and VLD-3 generate anexit con-
dition if an end-of-blockhas been encountered. This way,
the entropy decoding loop is left after the8 � 8 block has
been fully reconstructed. As mentioned, only a single code-
word is decoded on the first VLD-x (x � 2) call. Since
the average number of codewords per block is quite small,
ranging between 5 and 6 for non-intra macroblocks [12], the
inefficiency of the first VLD-x (x � 2) is significant. For
example, 3 VLD-2 calls instead of the ideal 2.5 are needed
to decode 5 coefficients (20% “overhead”), while 4 VLD-2
calls instead of the ideal 3 are needed to decode 6 coeffi-
cients (25% “overhead”).

In the second experiment class, VLD-2 and VLD-3 gen-
erate anexit condition if anend-of-macro-blockhas been
encountered, and the entropy decoding loop is left only af-
ter the entire macroblock has been reconstructed. There are
about 15 codewords per block for non-intra macroblocks
[12]. Considering again VLD-2, 8 instead of the ideal 7.5
VLD-2 calls are needed to decode a macroblock. Thus, the
first iteration “overhead” is much lower (only 7%). We have
to note that there is noend-of-macro-blocksymbol. An
end-of-macro-blockcondition is rised if theend-of-block
is encountered when the last block of the macroblock is be-
ing decoded.

For both experiment classes, the performances of the en-
tropy decoders have been evaluated according to two sce-
narios. In the first scenario, the VLDs return therun
value as defined by the MPEG standard, while the posi-
tion of the non-zero coefficient,nz coeff pos , in the
(macro)block is returned in the second scenario. When the
nz coeff pos represent the position in a block, the block
index,block index , in the macroblock is also returned
in the EOMB experiment class.

In the sequel, we will present the VLD-x associated in-
structions. The sintax of the VLD-1 and VLD-2 instructions
are quite similar:

VLD 1 Ry ! Rz, Rw

VLD 2 Ry, Ryy ! Rz, Rw

The registers Ry and Ryy contain the incoming coded
string which has been aligned to start with thecurrent, re-
spectivelyprevious codeword. Therun (or alternatively,
nz coeff pos), and thelevel for both current andprevious
codeword are each represented on a 16-bit signed integer,
and stored together as a four 16-bit signed integer vector in
the Rz register. Even thoughrun (ornz coeff pos) is always
a positive number which can be represented on 6 bits (10
bits for nz coeff pos), our solution is more effective with



Table 3. Entropy decoding experimental results.
Entropy Decoder Block Workload Pure software VLD-1–based VLD-2–based VLD-3–based Improvement

MPEG benchmark type (coeff.) (cycles) (cycles) (cycles) (cycles)

bat 327 334 I (B15) 172,745 2,843,376 2,050,693 1,618,656 1,799,032 44.2 %
NI 266,485 4,592,358 3,112,249 2,534,072 2,768,638

popplen I (B15) 47,003 777,553 546,243 435,114 474,281 43.3 %
NI 28,069 475,326 379,466 275,753 301,552

sarnoff2 I (B14) 80,563 1,387,489 946,538 748,844 822,253 42.8 %
NI 36,408 577,388 485,585 375,558 412,659

tennis I (B14) 12,345 210,011 149,366 118,943 131,284 43.4 %
I (B15) 120,754 1,937,808 1,421,498 1,109,466 1,248,815

NI 137,756 2,527,395 1,795,628 1,416,234 1,597,229

ti1cheer I (B15) 80,818 1,311,687 970,904 749,386 823,350 41.3 %
NI 51,680 836,082 667,417 512,389 573,799

respect to splitting the Rz vector into its components. In-
deed, a single TriMedia/CPU64 cycle is needed to extract
an element from a vector. The register Rw is an eight 8-bit
unsigned integer vector and contains thecode-lengths of the
current andnext codewords,block index-es associated to
current andprevious codewords in the EOMB class, as well
as control information for each and everyprevious, current,
andnext codewords. We decided to provide for redundant
control information such aserror, valid decode, andEOB
flags, in order to help the entropy decoder’s calling routine
to deal with error concealment [17, 7, 9]. Aglobal exit
flag which is set up when any exit condition is raised is also
provided.

The same strategy to packrun/nz coeff pos and level
values into a four 16-bit signed integer vector is no
longer possible in the VLD-3. Since there are too many
values which have to be returned by the VLD-3 call
(threeruns/nz coeff pos, threelevels, threecode-lengths,
threeblock indexes for the EOMB class, and the control
information), the only possible solution to pack them in a
64-bit word is to cross the boundaries between bytes. Thus,
field extraction will be performed by a sequence of mask,
shift and OR operations. Consequently, at least three
TriMedia/CPU64 cycles instead of a single one will be
needed.

The reference for evaluating the performance of FPGA–
based VLDs is a pure software entropy decoder [8], which
is itself an improved version of the one proposed by Pol
[12]. Since the pure software implementation is out of the
paper scope, we will not go into details. However, we still
mention that by running our pure software entropy decoder
on a TriMedia/CPU64 cycle accurate simulator over a set
of MPEG conformance bitstreams, we determined that 4 of
5 issue slots are filled in with operations (by comparison,
we mention that 2.9 of 5 issue slots are filled in with oper-
ations in Pol’s implementation). This result which updates

our initial assumption about the efficiency of the pure soft-
ware implementation [5] is indeed a challenging reference
for TriMedia/CPU64+FPGA hybrid.

The testing database for our entropy decoder consists
of a number of pre-processed MPEG conformance strings,
from which all the data not representing DCT coefficients
have been removed. Therefore, such strings include only
run-level and end-of-block symbols. All pure software,
VLD-1–based, VLD-2–based, and VLD-3–based entropy
decoders were run on the TriMedia/CPU64 cycle accurate
simulator over each of the modified MPEG string. The best
results for each entropy decoder are presented in Table 3.
The figures indicate the number of instruction cycles needed
to decode the pre-processed MPEG string. The relative
improvement specified in the last column of the Table has
been computed with reference to our pure software entropy
decoder.

Comparing the figures of the EOB experiment class with
the figures of EOMB class is a little unfair from the EOMB
point of view, for more functionality is considered in the
later class. Since the entropy decoder delivers the entire
macroblock on completion in the EOMB class, and only an
8�8 block in EOB class, block reconstruction is not carried
out in EOB experiment class. Since this extra functionality
for managing macroblock reconstruction is subject to op-
timizations at a complete MPEG decoder level, this is the
best we can do for the time being. Therefore, we proceed
to a conservative evaluation, accept this unfair comparison,
and claim that the FPGA-augmented TriMedia/CPU64 can
perform entropy decoding 43% faster than the standard Tri-
Media/CPU64. Given the fact that TriMedia/CPU64 is a
5 issue-slot VLIW processor with 64-bit datapaths and a
very rich multimedia instruction set, such an improvement
within the target media processing domain indicates that the
hybrid TriMedia/CPU64 + FPGA is a feasible approach for
entropy decoding.



6 Conclusions. Future Work

We proposed a strategy to partially break the data de-
pendency related to variable-length decoding. An FPGA–
based VLD-2 computing resource optimized in respect
with the entropy decoding task has been described. All
electronic-array blocks and 51% of the logic cells of an
ACEX EP1K100 FPGA have been used to implement
VLD-2. A VLD-2–based entropy decoder running on
FPGA-augmented TriMedia/CPU64 is 43% more efficient
than its pure software counterpart. In future work, we in-
tend to evaluate the performance improvement for a com-
plete MPEG decoder.

References

[1] R. Razdan and M.D. Smith, “A High Performance Mi-
croarchitecture with Hardware-Programmable Func-
tional Units,” in27th Annual International Symposium
on Microarchitecture – MICRO-27, San Jose, Califor-
nia, November 1994, pp. 172–180.

[2] R.D. Wittig and P. Chow, “OneChip: An FPGA Pro-
cessor With Reconfigurable Logic,” inIEEE Sym-
posium on FPGAs for Custom Computing Machines,
Napa Valley, California, April 1996, pp. 126–135.

[3] J.R. Hauser and J. Wawrzynek, “Garp: A MIPS Pro-
cessor with a Reconfigurable Coprocessor,” inIEEE
Symposium on FPGAs for Custom Computing Ma-
chines, Napa Valley, California, April 1997, pp. 12–
21.

[4] M. Sima, S.D. Cotofana, J.T.J. van Eijndhoven, S.
Vassiliadis, and K.A. Vissers, “8�8 IDCT Implemen-
tation on an FPGA-augmented TriMedia,” inIEEE
Symposium on FPGAs for Custom Computing Ma-
chines, Rohnert Park, California, April 2001.

[5] M. Sima, S.D. Cotofana, S. Vassiliadis, J.T.J. van
Eijndhoven, and K.A. Vissers, “MPEG Mac-
roblock Parsing and Pel Reconstruction on an FPGA-
augmented TriMedia Processor,” inIEEE Inter-
national Conference on Computer Design, Austin,
Texas, September 2001, pp. 425–430.

[6] M.-T. Sun, VLSI Implementations for Image Commu-
nications, vol. 2, chapter Design of High-Throughput
Entropy Codec, pp. 345–364, Elsevier Science Pub-
lishers B.V., Amsterdam, The Netherlands, 1993.

[7] J.L. Mitchell, W.B. Pennebaker, C.E. Fogg, and D.J.
LeGall, MPEG Video Compression Standard, Chap-
man & Hall, New York, New York, 1996.

[8] M. Sima, “MPEG-compliant Entropy Decoding on
TriMedia/CPU64,” Private Communication, Decem-
ber 2001.

[9] B.G. Haskell, A. Puri, and A.N. Netravali,Digital
Video: An Introduction to MPEG-2, Kluwer Aca-
demic Publishers, Norwell, Massachusetts, 1996.

[10] S.-M. Lei and M.-T. Sun, “An Entropy Coding System
for Digital HDTV Applications,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 1,
no. 1, pp. 147–155, March 1991.

[11] MPEG Software Simulation Group, “MPEG-2 Video
Codec,” http://www.mpeg.org/MPEG/MSSG/

[12] E.-J. Pol, “VLD Performance on TriMedia/CPU64,”
Private Communication, May 2000.

[13] S. Brown and J. Rose, “Architecture of FPGAs and
CPLDs: A Tutorial,” IEEE Transactions on Design
and Test of Computers, vol. 13, no. 2, pp. 42–57, 1996.

[14] Altera Corporation, “ACEX 1K Programmable Logic
Family,” Datasheet, San Jose, California, April 2000.

[15] J.T.J. van Eijndhoven, F.W. Sijstermans, K.A. Vis-
sers, E.-J. Pol, M.J.A. Tromp, P. Struik, R.H.J. Bloks,
P. van der Wolf, A.D. Pimentel, and H.P.E. Vranken,
“TriMedia CPU64 Architecture,” inProceedings
of International Conference on Computer Design,
Austin, Texas, October 1999, pp. 586–592.

[16] M.-T. Sun and K.-H. Tzou, “High-Speed Flexi-
ble Variable-Length-Code Decoder,” U.S. Patent No.
5,173,695, December 1992.

[17] International Telecommunication Unit, “Information
technology – Generic coding of moving pictures and
associated audio information: Video,” ITU-T Recom-
mendation H.262, February 2000.

[18] Y.-G. Park, “High Speed Variable Length Code De-
coding Apparatus,” U.S. Patent No. 5,561,690, Octo-
ber 1996.

[19] H.-D. Lin and D.G. Messerschmitt, “Designing a
High-Throughput VLC Decoder. Part II – Parallel De-
coding Methods,”IEEE Transactions on Circuits and
Systems for Video Technology, vol. 2, no. 2, pp. 197–
206, June 1992.

[20] S. Kinouchi and A. Sawada, “Huffman Code Decod-
ing Circuit,” U.S. Patent No. 5,617,089, April 1997.

[21] A. DeHon, “DPGA-Coupled Microprocessors: Com-
modity ICs for the Early 21st Century,” inIEEE Sym-
posium on FPGAs for Custom Computing Machines,
Napa Valley, California, April 1994.




