
Parallel Multiple-Symbol Variable-Length Decoding

Jari Nikara†, Stamatis Vassiliadis‡, Jarmo Takala†, Mihai Sima‡, and Petri Liuha§

†Institute of Digital and Computer Systems, Tampere University of Technology, Tampere, Finland
‡Computer Engineering Lab., Dept. of Electrical Engineering, TU Delft, Delft, The Netherlands

§Nokia Research Center, Tampere, Finland
E-mail: jari.nikara@tut.fi

Abstract

In this paper, a parallel Variable-Length Decoding
(VLD) scheme is introduced. The scheme is capable of de-
coding all the codewords in an N -bit buffer whose accu-
mulated codelength is at most N . The proposed method
partially breaks the recursive dependency related to the
MPEG-2 VLD. All possible codewords in the buffer are de-
tected in parallel and the sum of the codelengths is provided
to the external shifter aligning the variable-length coded
input stream for a new decoding cycle. Two length detec-
tion mechanisms are proposed: the first approach determ-
ines the length in a parallel/serial fashion and the second
using a new device denoted as MultiplexedAdd. In order
to prove feasibility and determine the limiting factors of
our proposal, the parallel/serial codeword detector with 32-
bit input has been described in behavioral non-optimized
VHDL and mapped onto Altera’s ACEX EP1K100 FPGA.
The implemented prototype exhibits a latency of 110 ns and
uses 32% of the logic cells of the device. When applied to
MPEG-2 standard benchmark scenes, on average 3.5 sym-
bols are decoded per cycle.

1. Introduction

The Variable-Length Coding (VLC) is used as a mean of
compression of image and video sequences. As its name in-
dicates, the codewords are of variable-length. Furthermore,
in the MPEG-2 standard, there is no boundary information
for detecting the end or beginning of the codeword. The
above substantially complicates the design and performance
of Variable-Length Decoding (VLD) hardware realizations.

A traditional way to manage the complexity is to de-
code one symbol at time. There are two hardware ap-
proaches: the serial tree-based processing, resulting in con-
stant input / variable output rates decoding [3, 6, 8] and
the bit-parallel approach with variable input / constant out-
put rates [7]. When considering multiple-symbol decod-

ing schemes, the main design issues are the breaking of
the data dependencies between codewords, which excludes
the serial processing, and the management of the increas-
ing hardware and control complexity, especially with large
code tables and long codewords. According to the prop-
erties of VLC, most probably a block of bits in the input
stream contains more than one codeword. This fact has been
exploited in a variable input / variable output rate multiple-
symbol decoding schemes for short codewords operating on
the longest codeword length buffer proposed in [1, 4]. The
alternative way to manage complexity is to keep the out-
put rate constant [12]. In the current multiple-symbol ap-
proaches, the performance is limited due to the fact that the
long arbitrary length input buffers are not exploited. Two
possible implementations are available where either only
short codewords are decoded concurrently or the number
of symbols is limited.

This paper describes a new variable input / variable out-
put VLD with the following main contributions:

• We propose a multiple-symbol parallel decoding
scheme, which decodes all the complete codewords
stored into the input buffer of arbitrary length. All the
possible codewords in the buffer are detected in paral-
lel and the sum of the codeword lengths is provided to
an external shifter aligning the variable-length coded
input stream for the next decoding cycle.

• We propose two mechanisms with the intend to
provide short critical paths. The first mechanism de-
termines the length in a parallel/serial fashion and
the second introduces the MultiplexedAdd unit, which
fuses the critical path and almost reduces by half the
critical path in terms of logic gates.

• We provide a prototype based on Altera’s ACEX
EP1K100 FPGA intended to show the limiting features
of our approach. We show that a naive implementation
requires 32% of the FPGA logic cells, has 110 ns cycle
time it is capable of detecting in average 3.5 symbols
of the 4.7 potential symbols detected out of a 32-bit
buffer.

COS
Proceedings of ICCD 2002, Freiburg, Germany, September 16-18

{Variable-Length Coded Data}

Input Buffering
&

Alignment

Codeword
Detection

Symbol
Look-up

Output

{Symbol(s)}{Codeword(s)}

Buffering

{length}

Figure 1. Generalized VLD scheme.

The remaining of the discussion is organized as follows.
Related work is outlined in Section 2. In Section 3, the
proposed decoding scheme is introduced and the theoretical
performance is estimated. Decoder design and experimental
results are discussed in Section 4. Finally, the conclusions
are presented with a glance to future work in Section 5.

2. Related Work

Hardwired VLD decoders extract the codeword and its
length and aligns the variable-length coded input stream for
the next decoding iteration as illustrated in Fig. 1. Con-
sequently, depending on codeword and prespecified code
values, i.e., code table, symbols are determined. Depending
on the decoding technique, input code, output symbols, or
both are buffered. Existing VLD decoders can be classified
in three approaches as follows:

Approach 1: The serial architectures, also referred to as
tree-based architectures, decode data sequentially, bit-by-
bit [8] or in clusters of several bits [3]. The algorithm used
is the inverse interpretation of building the Huffman tree;
coded input stream is compared to binary tree starting at the
root of the tree. The comparison is performed with a con-
stant input rate, one bit per cycle, until the entire codeword
is detected in corresponding leaf node resulting in a variable
output rate. Short decoding time is achieved only with short
codewords. However, under hard real-time constraints, the
required output rate should be fulfilled also with long code-
words, thus the performance is defined by the latency of
the long codeword processing. Furthermore, the serial pro-
cessing is not applicable for multiple-symbol decoding due
to recursive dependencies between codewords.

Approach 2: For a constant output rate, the number of
bits to be decoded at a time should be equal to the longest
codelength resulting in bit-parallel processing, which guar-
antees that at least one codeword is detected. Traditionally,
codeword has been detected with pattern matching based on
logical functions [7]. The alignment of input stream for the
next cycle is performed according to the codelength. Ad-
vances are achieved by clustering bit patterns and utilizing
tree-based pattern matching [2]. Moreover, designs can be
pipelined into stages of codelength determination and find-
ing the corresponding symbol since length information is
sufficient to extract codeword [9]. Furthermore, the tradi-

tional pattern matching has been replaced with arithmetic
operations utilizing the properties of codeword table, e.g.,
leading characters and numerical properties [10, 11, 13].

Approach 3: According to the properties of VLC, most
probably a block of bits in the input stream contains more
than one codeword. This fact has been exploited in a vari-
able input/output rate multiple-symbol decoding scheme
for short codewords proposed in [1, 4]. The exponentially
increasing control and hardware complexity sets constraints
to implementations, especially, when large code tables are
used. Hence, the number of bits to be decoded is limited
to the longest codelength [1] or alternatively the number of
outputs is limited [4]. The increasing complexity can also
be managed by using symbol parallel decoding while keep-
ing the output rate constant [12].

In this paper, we propose a multiple-symbol decoding
scheme, which is parallel (different from [3, 6, 8]). It de-
codes multiple symbols (different from [2, 3, 6, 8, 9, 10,
13]) and exploits arbitrary codelength buffers and variable
output rate (different from [1]- [4], [6]- [13]). Finally, we
propose a specific hardware mechanism, which improves
the cycle time of the decoder.

3. Decoding Scheme

The main challenge in the parallel symbol detection in
VLD is to break the recursive dependencies between the
codewords or at least to minimize its effects to the through-
put. The proposed approach is to decode all the codewords
stored into the codeword buffer simultaneously.

To achieve our goals, we first determine how many
variable-length codewords can exist in the codeword buf-
fer at a time. To this purpose we define the codelengths of a
code table with the aid of a set SL = {l1, . . . , ln} where
l1 and ln denote the minimum and maximum length of
codewords, respectively. Consequently, the maximum num-
ber of codewords in an N -bit buffer is Kmax = �N/l1�,
N ≥ ln. Let us denote the variable-length codewords in
the buffer by Wi where i = 0, 1, . . . , (Kmax − 1) and the
length of codeword Wi by Li. Moreover, let us define an
index ji, 0 ≤ ji ≤ (N − 1), which indicates the first bit of
the codeword Wi in the N -bit codeword buffer.

For ease of comprehension and without losing generality,
we may assume that the first codeword W0 is always located
in the beginning of the buffer thus j0 = 0. The second code-
word W1 is located immediately after the first codeword,
thus the index indicating the start of the second codeword
is the length of the first codeword, i.e., j1 = L0. This im-
plies that the start index of the codeword Wi is the sum of
the lengths of the previous codewords, i.e., ji =

∑i−1
k=0 Lk.

The lengths of the codewords in the buffer are not known
in advance. In order to avoid the recursive dependencies, a
parallel search is needed for the codewords from “arbitrary”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15F0

Full
Code Tables

Partial Code Tables

W1
W1

W1, W2
W1, W2

W1, W2, W3
W1, W2, W3

W1, W2, W3, W4
W2, W3, W4

W2, W3, W4, W5
W2, W3, W4, W5

W2, W3, W4, W5, W6
W2, W3, W4, W5, W6

W2, W3, W4, W5, W6, W7

F1
F2

F3
F4

F5
F6

F7
F8

F9
F10

F11
F12

F13

Figure 2. Principle of codeword detection.

locations in the buffer.

In general, the set of all the candidate indices can be
defined as p = {0, l1, (l1 + 1), (l1 + 2), . . . , (N − l1)},
which implies that there are (N − 2(l1 − 1)) locations in
the N -bit buffer where a codeword can be located. Since
the maximum length of the codeword is known, i.e., ln, we
extract ln-bit fields from all the possible locations defined
by set p and apply pattern matching to detect a valid code-
word in each field. However, the codeword detection can
be performed only if all the bits of the codeword are avail-
able. Therefore, in fields starting at the last (ln − 1) in-
dices, the pattern matching is easier; fields starting at index
N − K,K < ln, only codewords of lengths up to K bits
need to be searched after.

The previous procedure will detect a redundant number
of codewords. The reason is that a shorter codeword can be
found from a valid codeword when the bit field is extracted
in the middle of the valid codeword. Therefore, each search
process returns only the length of the detected codeword.
With the aid of the lengths, we may define the indices of the
valid codewords in the buffer; the length of the first code-
word defines the index to the second codeword. The lengths
of the first and second codeword define the index to the third
codeword, etc.

An example of detecting the codewords in 16-bit buf-
fer is illustrated in Fig. 2. Assuming a code table whose
codelengths are defined by the set SL = {2, 3, 4, 5, 6, 7, 8},
the maximum number of codewords is Kmax = 8. In this
case, 14 bit fields are extracted and all the codewords are
matched into these fields as illustrated with the aid of boxes
in Fig. 2. The first field, F0 consist of the first valid code-
word W0. The second codeword is found in one of the seven
fields F1 - F7. Similarly, the possible third codeword can
be found from the fields F3 to F13. The possible codewords
in the bit fields are included into corresponding boxes in
Fig. 2. The lengths of bit fields from F8 to F13 are shorter

Table 1. Properties of benchmarks.
Benchmark b S B b/B S/B

bat 327 334 1 506 680 266 485 38 940 38.7 6.8
popplen 153 265 28 069 4 139 37.0 6.8
sarnoff 169 567 36 408 8 447 20.1 4.3
tennis 989 235 137 756 25 524 38.8 5.3
t1cheer 255 433 51 680 9 432 27.1 5.6
Total 3 074 180 520 398 86 482 35.6 6.0
b:bits. S:symbols. B:block. b/B:bits per block. S/B:symbols per block.

than the others, since they are in the end of the buffer and
the number of available bits in the buffer is less ln. This is
indicated by the grey area of the boxes in Fig. 2.

In order to complete variable-length decoding, the sym-
bols corresponding codewords should be searched from
a code table. Since the codeword boundary information
is obtained from the codeword detection described previ-
ously, the recursive dependencies between codewords are
removed. In other words, the codewords can be extracted
from input stream and look-up process can be performed
independently. Briefly, the described variable-length decod-
ing scheme can be outlined as follows:

• The maximum number of codewords the N -bit code-
word buffer can hold Kmax is determined

• (N − 2(l1 − 1)) bit fields of size ln bits are extrac-
ted from the buffer. The bit fields are extracted from
locations {0, l1, l1 + 1, l1 + 2, . . . , N − l1}

• Codewords are detected from each bit field such that
the possible codeword starts from the beginning of the
field. If a codeword is detected, the length of the code-
word is returned.

• The valid codewords in the buffer are found according
to indices, which are obtained by computing the sum
of the lengths of the previous valid codewords.

• Symbols corresponding the valid codewords are found
with the aid of table look-up process where parallelism
can be increased.

The highest utilization rate of the buffer is achieved if all
the complete codewords are detected in a single cycle and
the codeword buffer can be updated at each cycle. How-
ever, in practice, the buffer may contain a partial codeword,
which should be kept in the buffer and processed at the next
cycle when the remaining bits are fetched into the buffer.
In order to estimate the upper bound for the throughput, the
scheme is applied to MPEG-2 benchmark scenes coded ac-
cording to code table B.14 in [5]. The properties of bench-
marks are summarized into Table 1, and the proportion of
buffer size to throughput is illustrated in Fig. 3.

24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
2

3

4

5

6

7

8

9

10

11

12

13

14

Buffer size (N)

S
ym

bo
ls

/C
yc

le

Combined
bat_327_334

popplen

sarnoff2

t1cheer

tennis

Figure 3. Register size vs. throughput.

4. Variable-Length Decoder and Experimental
Results

Since the proposed variable length decoder results in a
variable input/variable output rate system, the buffering re-
sources are needed in the input as well as in the output. The
target for our design is an embedded system with external
buffering and shifting resources. In the presentation, only
the kernel design of the VLD consisting codeword detec-
tion and symbol lookup is considered.

General Organization: The decoder design is started
by considering the parallel detection of all the codewords
in the input buffer. This is realized with (N − 2(l1 − 1))
Codeword Detectors (CD) as illustrated in Fig. 4. With this
arrangement, the (N − ln − l1 + 2) leftmost CDs obtain an
ln-bit field from the input buffer but from different bit loca-
tions while for the remaining (ln − l1) CDs, it is sufficient
to detect only shorter codewords. All the CDs detect code-
words simultaneously and return the length of the detected

0 l1

CD

(N-l1)

L0 L1 L(Kmax-1)

CD

Critical
Path

l1+1

CD

L2

CD

Σ L

Wiring

Figure 4. Organization of parallel/serial code-
word detection.

a2 a1 a0b0b1b2 P0 P2 P6 P7P4P1 P3 P5

Os2 s1 s0 FA: Full Adder

FA

0

FA

FA 0 0 0

0 0

0
Critical Path

carry

'0'

MAA
B

Alternatives

Sum
O

Figure 5. Schematic of MultiplexedAdd.

codeword. In order to select the valid codelengths, i.e., Li,
from all the lengths of detected codewords, the stage of cas-
caded multiplexers is employed as depicted in Fig. 4. Each
multiplexer should have inputs from all the CDs whose bit
fields are in locations il1–iln in the input buffer. Since the
first codelength L0 is always obtained from the first CD,
it controls the first multiplexer selecting the second valid
codelength L1. Moreover, the output of the first output can
be used to provide the decoding status, i.e., if the codelength
is zero, the decoding is completed or an error is detected.
The other multiplexers are controlled by the sum of the pre-
vious codelengths. Hence, the computation of the sum of
the codelengths creates the critical path, which is shown
with a dashed line in Fig. 4.

The codewords can be extracted from the input buffer
according to the length information and decoded independ-
ently. Moreover, the decoding can be parallelized when the
recursive dependencies are removed in the codeword de-
tection. The performance bottleneck will be the codeword
detection, which should be one cycle operation in order to
obtain the align information, i.e., the sum of codelengths in
the buffer to shifter. In order to minimize the latency of crit-
ical paths in the codeword detection, the MultiplexedAdd
(MA) component is introduced. The MA computes the sum
of two inputs and performs multiplexing in parallel with the
addition. To clarify consider to following. Let us assume
two three-bit numbers A and B whose sum S controls the
selection of the output O from possibilities P0 − P7. Con-
sequently, the output can be defined as

O =P0s̄2s̄1s̄0 + P1s̄2s̄1s0 + P2s̄2s1s̄0 + P3s̄2s1s0+
P4s2s̄1s̄0 + P5s2s̄1s0 + P6s2s1s̄0 + P7s2s1s0, (1)

which can be further decomposed as

O =(P0s̄1s̄0 + P1s̄1s0 + P2s1s̄0 + P3s1s0) s̄2+
(P4s̄1s̄0 + P5s̄1s0 + P6s1s̄0 + P7s1s0) s2

= [(P0s̄0 + P1s0) s̄1 + (P2s̄0 + P3s0) s1] s̄2+
[(P4s̄0 + P5s0) s̄1 + (P6s̄0 + P7s0) s1] s2. (2)

The corresponding logic design is depicted in Fig. 5. With
the aid of this unit, the sum of current codelength Li, and
previous codelengths, i.e.,

∑i−1
k=0 Lk, can be computed and

0-23 2-25 3-26 4-27 5-28 6-29 7-30 8-31 9-25 10-26 11-27 12-28 13-29 18-3117-3116-3114-30 15-31

CDCD CDCD CDCD CDCD CDCD CDCD CDCD CDCD CDCD CDCD CDCD CDCD CDCD CDCD CDCD

22-3121-3120-3119-31 26-3125-3124-3123-31 30-3129-3128-3127-31

WIRING

L L

SL=p1={2, 3, 4, 5 , 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 24} p2={4, 5 , 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

L(p1)

p3={6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

p4={8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30} p5={10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30} p6={12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

L(p2) L(p3) L(p4) L(p5) L(p6) L(p7) L(p8) L(p9) L(p10) L(p11) L(p12) L(p13) L(p14) L(p15)

L(pi): Lengths from candidate indices for i:th codelength Li.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15L0

Σ L Σ L

Σ L: Sum of detected codelengths.

Figure 6. Organization of FPGA codeword detection.

the next codelength Li+1 can be selected at the same time.
Using MAs, the latency between two codelengths is reduced
from the latency of a log(N)-bit adder and complex multi-
plexers to the latency of log(N) full adders and a 2-1 multi-
plexer as illustrated in Fig. 5. In terms of logical stages us-
ing 3-4 And-Or (AO) and 2-2 AOs and inverters, the stages
can be reduced from 2 log(N) stages to log(N) + 1 stages.

Demonstrator (codeword detection) and perform-
ance analysis: In order to estimate the worst latency of
the proposed decoding scheme, the codeword detector re-
turning codelength was described in behavioral VHDL and
realized on Altera’s ACEX EP1K100 FPGA. In order to es-
tablish the worst case scenario for our scheme we imple-
mented the organization reported in Fig. 4. Additionally,
the realization does not contain any FPGA specific optimiz-
ations. Continuous MPEG-2 data coded according to code-
word table B.14 in [5] has been chosen as input for the im-
plementation.

The design specifications are determined according to
analyzed statistics of source data in Table 1. In MPEG-2
data, the DC coefficient, i.e. the first codeword in a block,
is interpreted differently from the AC coefficients. In our
implementation, this dependency between the blocks is sim-
plified by decoding the DC coefficient only in the first CD.
The drawback is that when end-of-block codeword is de-
tected, the buffer is updated although other codewords may
still exist in the buffer. In other words, only one block can
be processed at a time. Therefore, the input buffer has been
specified to be 32 bits while the number of bits in a block
varies from 20 to 39. Since l1 = 2 and ln = 24, the result-
ing structure consist of 30 CDs as depicted in Fig. 6. The
eight leftmost CDs can detect the all codewords in the code
table, thus they have 24-bit inputs aligned to different buf-
fer bit locations shown above the CDs in Fig. 6. The next
seven CDs have 17-bit inputs and the input width of all
the other CDs decreases according to codelengths until the
last CD detects only 2-bit codewords. All the CDs return
codelengths in parallel. The codelength set SL for B.14

is depicted in Fig. 6. The buffer may contain at most 16
codewords, which determines the number of outputs. The
largest group of codelength candidates is for the third output
L2, which consist of lengths from 28 CDs. The codelength
candidates for the six outputs are illustrated with the aid of
set pi defining the starting locations of CDs in Fig. 6.

We have experimented with two designs. The first de-
tects all symbols from the buffer and the other detects at
maximum six symbols from the buffer. The cycle time of
the first design (Fig. 6 including all blocks) is defined by
the signal delay through a CD with 24-bit input, one 15-1
multiplexer and 15 five-bit adders. The synthesis of beha-
vioral VHDL results in a latency of 250 ns, which proves
the feasibility and shows the limit of the approach rather
than its potential. The experimental results are summarized
into Table 2. Column “Scheme” contains the upper limits
for the performance scheme with a 32-bit buffer. The fig-
ures are obtained by assuming that data is processed without
making any difference to the DC and AC coefficients and
all the codewords in the input buffer are detected concur-
rently. The required cycles and achieved throughput for
the demonstrator are depicted in column “FPGA-32/16” in
Table 2. On average, 3.6 codewords per cycle are detected,
which differs from theoretical values due to avoiding block
dependencies.

Table 2. Experimental results.
Scheme FPGA-32/16 FPGA-32/6

Benchmark C W/C C W/C C W/C

bat 327 334 52 928 5.0 70 018 3.8 71 356 3.7
popplen 5 369 5.2 7 141 3.9 7 345 3.8
sarnoff 5 834 6.2 10 452 3.5 10 725 3.4
tennis 36 920 3.7 44 342 3.1 44 733 3.1
t1cheer 8 784 5.9 13 301 3.9 13 807 3.7
Total 109 835 4.7 145 254 3.6 147 966 3.5
Scheme: scheme (32-b input, 16 outputs). FPGA-X/Y: demonstrator
(X-b input, Y outputs). C: cycles. W/C: codewords per cycle.

bat_327_334

popplen

sarnoff

tennis

t1cheer

Total

Scheme (100 %)
FPGA-32/16 (76 %)
FPGA-32/6 (74 %)

Scheme (100 %)
FPGA-32/16 (75 %)
FPGA-32/6 (73 %)

Scheme (100 %)
FPGA-32/16 (56 %)
FPGA-32/6 (55 %)

Scheme (100 %)
FPGA-32/16 (84 %)
FPGA-32/6 (84 %)

Scheme (100 %)
FPGA-32/16 (66 %)
FPGA-32/6 (63 %)

Scheme (100 %)
FPGA-32/16 (77 %)
FPGA-32/6 (74 %)

1 2 3 4 5 6

Symbols/
Cycles

Benchmark

Average of FPGA-32/6: 3.5

Average of FPGA-32/16: 3.6

Average of Scheme: 4.7

Figure 7. Throughput comparison.

Since we consider one block at a time and because the
average symbols per block is six, the number of outputs is
reduced from 16 to six in the second design (Fig. 6 only
dark lined blocks). This was justified by the fact that the
average number of symbols per block in our benchmarks
is about six. Consequently, the latency of the multiplexer
chain is shortened. However, by maintaining the size of
the input buffer, the probability to have six symbols at time
was increased. The design is depicted in Fig. 6 where the
removed parts are drawn with lighter lines. The design pos-
sesses the latency of 110 ns. Extra cycles are required if
block contains more than six symbols. The cost of the sim-
plification in terms of total number of cycles is presented
in column “FPGA-32/6” in Table 1 whereas the differences
between the benchmarks are illustrated in Fig. 7. It is noted
that the performance of the two designs FPGA-32/16 and
FPGA-32/6 in terms of detected symbols per cycle is very
close while the cycle time of FPGA-32/16 is more than
double of the FPGA-32/6.

5. Conclusions

In this paper, a parallel multiple-symbol decoding
scheme for variable-length codes has been proposed. The
proposed scheme is applied to MPEG-2 benchmark scenes
for estimating the maximum performance achievable. It
has been shown that the throughput rate is proportional to
the size of input buffer and for 32-bit buffer, the average
throughput is 4.7 symbols per cycle. Two schemes have
been proposed for providing a VLD and a naive codeword
detector has been described in VHDL and mapped onto Al-

tera’s ACEX EP1K100 FPGA. The evaluated results indic-
ate that 3.5 symbols per cycle out of the 4.7 average symbols
present in the 32-bit buffer can be detected per cycle. The
critical path of 110 ns, proves the feasibility and is a lim-
iting factor of the approach rather than its potential. In the
future, we intend to design a more structured fast codeword
detection. In addition, parallel symbol search is studied for
implementing the variable-length decoder in its entirety.

References

[1] S.-F. Chang and D. G. Messerschmitt. Designing high-
throughput VLC decoder. Part I - Concurrent VLSI architec-
tures. IEEE Trans. Circuits Syst. Video Technol., 2(2):187–
196, June 1992.

[2] S. B. Choi and M. H. Lee. High speed pattern matching for
a fast Huffman decoder. IEEE Trans. Consumer Electron.,
41(1):97–103, Feb. 1995.

[3] R. Hashemian. Design and hardware implementation of
a memory efficient Huffman decoding. IEEE Trans. Con-
sumer Electron., 40(3):345–352, Aug. 1994.

[4] C.-T. Hsieh and S. P. Kim. A concurrent memory-efficient
VLC decoder for MPEG applications. IEEE Trans. Con-
sumer Electron., 42(3):439–446, Aug. 1996.

[5] International Telecommunication Union. Information tech-
nology – Generic coding of moving pictures and associated
audio information: Video. ITU-T Recommendation H.262,
Feb. 2000.

[6] Y.-S. Lee, B.-J. Shieh, and C.-Y. Lee. A generalized pre-
diction method for modified memory-based high through-
put VLC decoder design. IEEE Trans. Circuits Syst. II,
46(6):742–754, June 1999.

[7] S. M. Lei and M. T. Sun. An entropy coding system for
digital HDTV applications. IEEE Trans. Circuits Syst. Video
Technol., 1(1):147–155, Mar. 1991.

[8] A. Mukherjee, N. Rangnathan, and M. Bassiouni. Efficient
VLSI designs for data transformation of tree-based codes.
IEEE Trans. Circuits Syst., 38(2):306–314, Mar. 1991.

[9] M. K. Rudberg and L. Wanhammar. New approaches to high
speed Huffman decoding. In Proc. IEEE Int. Symp. Circuits
Syst., volume 2, pages 149–152, Atlanta, USA, May 1996.

[10] B.-J. Shieh, Y.-S. Lee, and C.-Y. Lee. A new approach of
group-based VLC codec system with full table programmab-
ility. IEEE Trans. Circuits Syst. Video Technol., 11(2):210–
221, Feb. 2001.

[11] M. Sima, S. Cotofana, S. Vassiliadis, J. T. J. van Eijndhoven,
and K. Visser. MPEG macroblock parsing and pel recon-
struction on an FPGA-augmented TriMedia processor. In
Proc. IEEE Int. Conf. Comput. Design, pages 425–430, Aus-
tin, Texas, USA, Sep. 24–26 2001.

[12] M. Sima, S. Cotofana, S. Vassiliadis, J. T. J. van Eijnd-
hoven, and K. Visser. MPEG-compliant entropy decod-
ing on FPGA-augmented TriMedia/CPU64. In Proc. IEEE
Symp. Field-Programmable Custom Computing Machines,
Napa Valley, CA, USA, Apr. 21–24 2002.

[13] B. W. Y. Wei and T. H. Meng. A parallel decoder of
programmable Huffman codes. IEEE Trans. Circuits Syst.
Video Technol., 5(2):175–178, Apr. 1995.

