
REPRINTED FROM: PROC. OF PROGRESS WORKSHOP { UTRECHT, THE NETHERLANDS, OCTOBER 13, 2000 87

A Taxonomy of Custom Computing Machines

Mihai SIMA Stamatis VASSILIADIS Sorin COTOFANA Jos van EIJNDHOVEN Kees VISSERS

Abstract|The need for providing a hardware

platform which can be customized on a per-

application basis under software control has estab-

lished the Recon�gurable Computing (RC) as a new

computing paradigm. A machine employing the RC

paradigm is referred to as a Custom Computing

Machine (CCM). Till now, the CCMs have been

classi�ed according to implementation criteria. As

the previous classi�cations do not seize well the

meaning of the RC paradigm, we propose a clas-

si�cation of the CCMs according to architectural

criteria. In order to analyze the phenomena in-

side CCMs, we introduce a new formalism based on

microcode, in which any FPGA-dedicated instruc-

tion is executed as a microprogrammed sequence

with two basic stages: SET CONFIGURATION, and

EXECUTE CONFIGURATION. Based on the SET=EXECUTE
formalism, we then propose an architectural-based

taxonomy of CCMs.

Index Terms|Recon�gurable Computing, Cus-

tom Computing Machines, Field-Programmable

Gate Arrays, microcode, CCMs taxonomy.

I. Introduction

T
HE ability of providing a hardware platform

which can be transformed under software control

has established a new computing paradigm, referred

to as Recon�gurable Computing (RC) [1], [2], [3], as an

emerging technology for more than ten years. Accord-

ing to this paradigm, the main idea in improving the

performance of a computing machine is to de�ne cus-

M. Sima is with the Department of Electrical Engineer-

ing, Delft University of Technology, Mekelweg 4, 2628 CD

Delft, The Netherlands. Phone: +31 (0)40 274{2593, email:

mihai@dutepp0.et.tudelft.nl
S. Vassiliadis is with the Department of Electrical Engi-

neering, Delft University of Technology, Mekelweg 4, 2628 CD

Delft, The Netherlands. Phone: +31 (0)15 278{7146, email:

stamatis@dutepp0.et.tudelft.nl
S. Cotofana is with the Department of Electrical Engineer-

ing, Delft University of Technology, Mekelweg 4, 2628 CD

Delft, The Netherlands. Phone: +31 (0)15 278{6267, email:

sorin@dutepp0.et.tudelft.nl
J. van Eijndhoven is with the Department of Information and

Software Technology, Philips Research, Professor Holstlaan 4,

5656 AA Eindhoven, The Netherlands. Phone: +31 (0)40 274{

3137, email: jos.van.eijndhoven@philips.com
K. Vissers is with TriMedia Technologies, Inc., 1840 Mc-

Carthy Boulevard, Milpitas, California 95035, U.S.A. Phone:

+1 408 922{4599, email: kees.vissers@trimedia.com

tom computing resources on a per-application basis,

and to dynamically con�gure them onto a Field Pro-

grammable Gate Array (FPGA) [4]. Consequently,

virtually in�nite hardware can be emulated.

As a general view, a computing machine work-

ing under the new RC paradigm typically includes

a General-Purpose Processor (GPP) augmented with

an FPGA. The basic idea is to exploit both the GPP

exibility to achieve medium performance for a large

class of applications, and FPGA capability to imple-

ment application-speci�c computations. Such a hy-

brid is referred to as a Custom Computing Machine

(CCM) [5]. The synergism of GPP and FPGA can

achieve orders of magnitude improvements in perfor-

mance over a GPP alone, while preserving the exi-

bility of the programmed machines over Application-

Speci�c Integrated Circuits (ASIC) in implementing

a large number of applications. However, the CCM

performance in terms of speed and power may still be

of orders of magnitude lower than the performance of

an ASIC.

Various CCMs have been proposed in the last

decade. Former attempts in classifying CCMs used

implementation criteria [6], [7], [8], [9], [10]. As the

user observes only the architecture of a computing

machine [11], the previous classi�cations do not seize

well the implications of the new RC paradigm as per-

ceived by the user. Therefore, we propose to clas-

sify the CCMs according to architectural criteria. In

order to analyze the phenomena inside CCMs, we

introduce a new formalism based on microcode, in

which the execution of an FPGA-dedicated instruc-

tion is performed as a microprogrammed sequence

with two basic stages: SET CONFIGURATION, and

EXECUTE CONFIGURATION. Based on the SET=EXECUTE

formalism, we propose an architectural-based taxon-

omy of CCMs.

The paper is organized as follows. For background

purpose, we present the most important issues related

to microcode in Section II, and the basic concepts con-

cerning SRAM-based FPGAs in Section III. Section

IV introduces a formalism by which the CCM archi-

tectures can be analyzed from the microcode point of

view, and Section V presents the architectural-based

taxonomy of CCMs. Section VI concludes this paper.

09 08-01/1 c 2000 STW



88 REPRINTED FROM: PROC. OF PROGRESS WORKSHOP { UTRECHT, THE NETHERLANDS, OCTOBER 13, 2000

II. The Microcode Concept

Figure 1 depicts the basic microprogrammed com-

puter as it is described in [12]. For such a computer,

a microprogram in Control Store (CS) is associated

with each incoming instruction. This microprogram

is to be executed on the Microprogrammed Loop un-

der the control of the Sequencer, as follows:

1. The sequencer maps the incoming instruction

code into a control store address, and stores this

address into the Control Store Address Register

(CSAR).

2. The microinstruction addressed by CSAR is

read from CS into the MicroInstruction Register

(MIR).

3. The microoperations speci�ed by the microin-

struction in MIR are decoded, and the control

signals are subsequently generated.

4. The computing resources perform the computa-

tion according to such control signals.

5. The sequencer uses the status information gen-

erated by the computing facilities as well as some

information originating from MIR to prepare the

address of the next microinstruction. This ad-

dress is then stored into CSAR.

6. If an end-of-operation microinstruction is de-

tected, a jump is executed to a microsubroutine

which implements the instruction fetch proce-

dure. At the end of the fetch microsubroutine,

the new incoming instruction initiates a new cy-

cle of the microprogrammed loop.

Sequencer

CSAR

M
IR

Status

Store
Control

. .
 . ALU

PC

ACC
. . .

Computing facilities

Microprogrammed  loop

Instruction

Fig. 1. The basic microprogrammed computer (ALU {
Arithmetic and Logic Unit, ACC { Accumulator, PC {
Program Counter) { adapted from [12]

The microinstructions may be classi�ed by the

number of controlled resources. Given a hardware

implementation which provides a number of comput-

ing resources (facilities), the amount of explicitly con-

trolled resources during the same time unit (cycle)

determines the verticality or horizontality of the mi-

crocode as follows:

� A microinstruction which controls multiple re-

sources in one cycle is horizontal. In the extreme

case, all the resources of the data path are con-

trolled, as it is depicted in Figure 2 { a.

� A microinstruction which controls a single re-

source is vertical. This situation is pictured in

Figure 2 { b.

LATCH

SHIFTER

µ- instr.
vertical

µ- instr.
vertical

µ- instr.
vertical

µ- instr.
vertical

ADDER

Computing resources

XOR

Horizontal microinstruction

LATCH

SHIFTER

µ- instr.
vertical

ADDER

Computing resources

XOR

Vertical microinstruction

(a) (b)

Fig. 2. A classi�cation of microinstructions: (a) { hori-
zontal microinstruction; (b) { vertical microinstruction

Let us assume we have a Computing Machine (CM)

and its instruction set. An implementation of the CM

can be formalized by means of the doublet:

CM = f�P ; Rg (1)

where �P is the microprogram which includes all the

microroutines for implementing the instruction set,

and R is the set of N computing (micro-)resources

or facilities which are controlled by the microinstruc-

tions in the microprogram:

R = fr1 ; r2 ; : : : ; rNg (2)

Let us assume the computing resources are hard-

wired. If the microcode1 is exposed to the user, i.e.,

the instruction set is composed of microinstructions,

there is no way to adapt the architecture to applica-

tion but by custom-redesigning the computing facil-

ities set, R. When the microcode is not exposed to

the user, i.e., a microroutine is associated with each

instruction, then the architecture can be adapted by

rewriting the microprogram �P .

As the architecture of the vertical microinstruc-

tions associated with hardwired computing facilities

is �xed, the adaptation procedure by rewriting the

microprogram is quite limited. In this way, an in-

struction is created by threading the operations of

�xed (i.e., inexible) computing facilities rather than

generating a full-custom one.

1 In this presentation, by microcode we will refer to both

microinstructions and microprogram. The meaning of the mi-

crocode will become obvious from the context.



Sima, Vassiliadis, Cotofana, van Eijndhoven, Vissers: CCM TAXONOMY 89

If the resources themselves are microcoded, the for-

malism recursively propagates to lower levels. There-

fore, the implementation of each resource can be

viewed as a doublet composed of a nanoprogram (nP )

and a nano-resource set (nR):

ri = fnP ; nRg ; i = 1; 2; : : : ; N (3)

Now it is the rewriting of the nanocode which is lim-

ited by the �xed set of nano-resources.

The presence of the recon�gurable hardware opens

up new ways to adapt the architecture. Assuming the

resources are implemented on a programmable array,

adapting the resources to the application is entire ex-

ible and can be performed on-line. In this situation,

the resource set R metamorphoses into a new one,

R�:

R �! R
� = fr�1 ; r

�

2 ; : : : ; r
�

Mg; (4)

and so does the set of associated vertical microinstruc-

tions. It is obvious that writing new microprograms

with application-tuned microinstructions is more ef-

fective than with �xed microinstructions.

At this point, we want to stress out that the mi-

crocode is a recursive formalism. The micro and nano

pre�xes should be used against an implementation

reference level2 (IRL). Once such a level is set, the

operations performed at this level are speci�ed by in-

structions, and are under the explicit control of the

user. Therefore, the operations below this level are

speci�ed by microinstructions, those on the subse-

quent level are speci�ed by nanoinstructions, and so

on.

III. FPGA Terminology and Concept

A device which can be con�gured in the �eld by

the end user is called a Field-Programmable Device

(FPD) [4]. In a general view, a FPD is composed

of two constituents: Raw Hardware (Processing Ele-

ments (PE) and interconnecting resources) and Con-

�guration Memory. The function performed by the

FPD is de�ned by the information stored into con�g-

uration memory.

The FPD architectures can be classi�ed in two ma-

jor classes: Programmable Logic Devices (PLD) and

Field-Programmable Gate Arrays (FPGA). Details on

2 If it will not be speci�ed explicitly, the IRL will be con-

sidered as being the level de�ned by the instruction set. For

example, although the microcode is exposed to the user in the

RISC machines, the RISC operations are speci�ed by instruc-

tions, rather than by microinstructions.

each class can be found for example in [4]. For now,

we want to mention only that although both PLD

and FPGA devices can be used to implement digital

logic circuits, we will pre-eminently above all use the

term of FPGA hereafter to refer to a programmable

device. The higher logic capacity of FPGAs and

the attempts to augment FPGAs with PLD-like pro-

grammable logic in order to make use of both FPGA

and PLD characteristics, support our choice for this

terminology.

Some FPGAs can be con�gured only once, e.g., by

burning fuses. Other FPGAs can be recon�gured any

number of times, as their con�guration is stored in

SRAM.

Initially considered as a weakness due to the volatil-

ity of programming data, in-system reprogramming

capabilities of SRAM-based FPGAs led to the new

RC paradigm. This paradigm assumes that in-system

FPGA recon�guration is performed under software

control. In this way, the user can instantly create

application-geared computing facilities.

With the new RC paradigm, complex instructions

can be implemented on-the-y. In this way, applica-

tions which are very computationally demanding can

be eÆciently executed. Also, a sequential recon�gura-

tion strategy can be used in order to deal with insuÆ-

cient con�gurable hardware. In this way, by swapping

the con�gurations in and out of the FPGA upon de-

mand and in real-time, only the necessary hardware is

instantiated at any given time. Consequently, with a

limited hardware resource, virtually in�nite hardware

is emulated.

Unfortunately, a huge recon�guration data rate is

needed to achieve a run-time recon�guration. For ex-

ample, following the methodology described in [13],

we estimate that for an array of 100 4-input LUT-

based processing elements interconnected by a �xed

network for the sake of simplicity, a recon�guration

data rate of 16 Gbit=s is needed if the con�guration

is to be changed on every cycle with a frequency of

10 MHz.

It is this recon�guration data rate which consti-

tutes the major drawback of the RC paradigm. The

attempts to overcome this drawback led to di�er-

ent recon�guration patterns which, in turn, induced

the name of the major FPGA architectural classes:

Single-Context, Multiple-Context, Partial Recon�g-

urable.

A single-context device typically requires a global

recon�guration even for changing 1 bit of its con�g-

uration information. As a single-context FPGA does



90 REPRINTED FROM: PROC. OF PROGRESS WORKSHOP { UTRECHT, THE NETHERLANDS, OCTOBER 13, 2000

not make use of any technique to increase the recon-

�guration data bandwidth, it can be recon�gured only

at a very low rate.

A multiple-context FPGA stores multiple layers of

con�guration information referred to as contexts, only

one of them being active at a time. An extremely fast

context switch is possible, at the expense of a huge

transient power consumption. As each layer of the

con�guration memory can be independently written,

the circuit de�ned by the active con�guration layer

may continue its execution, while the non-active con-

�guration layers are being recon�gured.

In a partially recon�gurable device, means for se-

lective recon�guration of the array are provided. The

portions of the array which are not being con�gured

may continue execution. Consequently, the computa-

tion and recon�guration can be overlapped.

A discussion on choosing the appropriate FPGA

architecture is beyond the goal of this paper. More

information concerning this problem can be found for

example in [14].

IV. FPGA to Microcode Mapping

In this section, we will introduce a formalism by

which a CCM architecture can be analyzed from the

microcode point of view. This formalism originates in

the observation that every instruction of a CCM can

be mapped into a microprogram.

As we already mentioned, by making use of the

FPGA capability to change its functionality in pur-

suance of a recon�guring process, adapting both the

functionality of computing facilities and micropro-

gram in the control store to the application character-

istics are possible with the new RC paradigm. As the

information stored in FPGA's con�guration memory

determines the functionality of the raw hardware, the

dynamic implementation of an instruction on FPGAs

can be formalized by means of a microcoded struc-

ture. In such a structure, the micro-programmed loop

and the FPGA may have a � arrangement, as de-

picted in Figure 3. Both FPGA constituents { Con�g-

uration Memory, and Raw Hardware { are regarded as

controlled resources in the proposed formalism. Each

of the previously mentioned resources is given a spe-

cial class of microinstructions: SET for con�guration

memory, and EXECUTE for the circuits con�gured on

raw hardware. The SET microinstruction initiates the

recon�guration of the raw hardware, and the EXECUTE

microinstruction launches the operations performed

by the circuits con�gured on the raw hardware.

Micro-programmed loop

µ -PL)(

FPGA

configuration
the

Determines

SET CONFIGURATIONEXECUTE CONFIGURATION

Instruction

Configurable Computing
Resources (Facilities)

Resources (Facilities)
Fixed Computing

Feedback

Feedback

RAW HARDWARE CONFIGURATION
MEMORY
Configuring

Resources (Facilities)

EXECUTE FIX

Fig. 3. The microcode concept applied to CCMs. The �
arrangement

In this way, the execution of an FPGA-dedicated

instruction is performed as a microprogrammed se-

quence with two basic stages: a SET CONFIGURATION

stage, and an EXECUTE CONFIGURATION
3 stage. It is

the SET=EXECUTE formalism we will use in building

the taxonomy of CCMs.

It is worth stressing out that only EXECUTE FIX

microinstructions can be associated with �xed com-

puting facilities, because such facilities cannot be re-

con�gured. Also, assuming that a multiple-context

FPGA is used, activating an idle context is performed

by an ACTIVATE CONFIGURATION microinstruction,

which is actually a avor of the SET CONFIGURATION

microinstruction.

Although we regard the FPGA con�guration mem-

ory as a controlled resource in the proposed formal-

ism, such a resource is not a computing facility in the

strict sense. It has a dual status: controlled facility

for the micro-programmed loop and controlling unit

for the raw hardware. For this reason we will refer to

it as a Con�guring Resource.

Given that a CCM includes both computing and

con�guring facilities, the statement regarding the ver-

ticality or horizontality of the microcode as de�ned in

Section II needs to be adjusted. For a CCM hardware

implementation which provides a number of comput-

ing and con�guring facilities, the amount of explicitly

controlled computing or con�guring facilities during

the same time unit (cycle) determines the vertical-

3 As the di�erences between software and hardware become

fuzzy in the new RC paradigm, the EXECUTE CONFIGURATION

terminology can be considered acceptable.



Sima, Vassiliadis, Cotofana, van Eijndhoven, Vissers: CCM TAXONOMY 91

ity or horizontality of the microcode. Therefore, any

of the SET CONFIGURATION, EXECUTE CONFIGURATION,

and EXECUTE FIX microinstructions can be either ver-

tical or horizontal, and may participate in a horizontal

microinstruction.

Let us set the IRL as being the level of instruc-

tions in Figure 3. In the particular case when the

microcode is not exposed to the user, an explicit SET

instruction is not available. Consequently, the sys-

tem performs by itself the management of the active

con�guration, i.e., without an explicit control pro-

vided by user. In this case, the user \sees" only the

FPGA-dedicated instruction which can be regarded

as an EXECUTE CONFIGURATION microinstruction re-

ected to the instruction level4.

Otherwise, when the microcode is exposed to the

user, an explicit SET instruction is available, and the

management of the active con�guration becomes the

responsibility of the user.

V. A Proposed Taxonomy of CCMs

Before introducing our taxonomy, we would like to

overview the previous work in CCM classi�cation.

In [6] two parameters for classifying CCMs are used:

Recon�gurable Processing Unit (RPU) size (small or

large) and availability of RPU-dedicated local mem-

ory. Consequently, CCMs are divided into four

classes. As what exactly means small and what ex-

actly means large is subject to the complexity of

the algorithms being implemented, the di�erences be-

tween classes are rather fuzzy. Also, providing dedi-

cated RPU memory is an issue which belongs to im-

plementation level of a machine; consequently, the

implications to the architectural level, if any, are not

clear.

The PE granularity, RPU integration level with a

host processor, and the recon�gurability of the exter-

nal interconnection network are used as classi�cation

criteria in [7]. According to the �rst criterion, the

CCMs are classi�ed as �ne-, medium-, and coarse-

grain PE based systems. The second criterion divides

the machines into dynamic systems that are not con-

trolled by any external device, closely-coupled static

systems in which the RPUs are coupled on the pro-

cessor's datapath, and loosely-coupled static systems

that have RPUs attached to the host as a coprocessor.

According to the last criterion, the CCMs can have a

recon�gurable or �xed interconnection network. This

4 The EXECUTE FIX microinstruction is always reected to the

user.

classi�cation is based on the architecture of the pro-

grammable arrays themselves and CCM implementa-

tion issues rather than CCM architectural criteria.

In order to classify the CCMs, the loosely coupling

versus tightly coupling criterion is used by other mem-

bers of the CCM community, also [8], [9], [10]. In

the loosely coupling embodiment, the RPU is con-

nected via a bus to, and operates asynchronously with

the host processor. In the tightly coupling embodi-

ment, the RPU is used as a functional unit. This

model eliminates the problem of synchronization and

reduces the communication latency between host and

RPU.

We want to stress out that all the above classi�ca-

tions are build using CCM implementation criteria.

As the user observes only the architecture of a com-

puting machine, classifying the CCMs according to

architectural criteria is more appropriate.

This is why we propose to classify the CCMs ac-

cording to architectural criteria. As the CCMs are

microcoded machines, the criteria we use are:

1. The verticality/horizontality of the microcode.

2. The explicit availability of a SET instruction.

According to these criteria, the most well known

CCMs can be classi�ed as follows:

1. Vertical microcoded CCMs

(a) With explicit SET instruction: PRISM [15],

PRISM-II/RASC [16], [17], RISA' [18], RISA"

[18], MIPS-derived host + REMARC [19],

Garp [20], OneChip-98" [10], URISC [21],

Nano-Processor (load-time recon�guration)

[22], Gilson's CCM [23], CCSimP (load-time

recon�guration) [24], Xputer/rALU (load-time

recon�guration) [25].

(b) Without explicit SET instruction: PRISC [26],

OneChip [9], ConCISe [27], OneChip-98' [10],

DISC [28], Multiple-RISA [29], Chimaera [30].

(c) Not obvious information about an explicit SET

instruction: Virtual Computer [31], Functional

Memory [32], NAPA [33].

2. Horizontal microcoded CCMs

(a) With explicit SET instruction: CoMPARE

[34], Alippi's VLIW [35], RISA"' [18], VEGA

[36], RaPiD (load-time recon�guration) [37],

Colt [38], rDPA [39].

(b) Without explicit SET instruction: PipeRench

[40].

(c) Not obvious information about an explicit SET

instruction: Spyder [41].



92 REPRINTED FROM: PROC. OF PROGRESS WORKSHOP { UTRECHT, THE NETHERLANDS, OCTOBER 13, 2000

We would like to mention that applying the classi�-

cation criteria on OneChip-98 machine introduced in

[10], we determined that an explicit SET instruction

was not provided to the user in one embodiment of

OneChip-98, while such an instruction was provided

to the user in another embodiment. It seems that two

architectures were claimed in the same paper. We re-

ferred to them as OneChip-98' and OneChip-98".

The same ambiguous way to propose multiple ar-

chitectures under the same name is employed in [18].

For the Recon�gurable Instruction Set Accelerator

(RISA), our taxonomy provides three entries (RISA',

RISA", RISA"').

The taxonomy we proposed is architectural con-

sistent, and can be easily extended to embed other

criteria. For a complete taxonomy of CCMs we refer

the user to [42].

VI. Conclusions

In this paper we proposed a classi�cation of the

CCMs according to architectural criteria. Two clas-

si�cation criteria were extracted from a formalism

based on microcode. In terms of the �rst criterion,

the CCMs were classi�ed in vertical or horizontal mi-

crocoded machines. In terms of the second criterion,

the CCMs were classi�ed in machines with or with-

out an explicit SET instruction. As future work, we

would like to generate new criteria highlighting the

structure of the set of the computing resources.

References

[1] W.H. Mangione-Smith and B.L. Hutchings, \Recon�g-

urable Architectures: The Road Ahead," in Proc. Re-

con�gurable Architectures Workshop, Geneva, Switzerland,

1997, pp. 81{96.

[2] J. Villasenor and W.H. Mangione-Smith, \Con�gurable

Computing," Scienti�c American, pp. 55{59, 1997,

http://www.sciam.com/0697issue/0697villasenor.html.

[3] W.H. Mangione-Smith et al., \Seeking Solutions in Con-

�gurable Computing," IEEE Computer, vol. 30, no. 12,

pp. 38{43, 1997.

[4] Stephen Brown and Jonathan Rose, \Architecture of FP-

GAs and CPLDs: A Tutorial," IEEE Tran. on Design and

Test of Computers, vol. 13, no. 2, pp. 42{57, 1996.

[5] D.A. Buell and K.L. Pocek, \Custom Computing Ma-

chines: An Introduction," J. Supercomputing, vol. 9, no.

3, pp. 219{230, 1995.

[6] S.A. Guccione and M.J. Gonzales, \Classi�cation and Per-

formance of Recon�gurable Architectures," in Proc. 5th

Int'l. Workshop on Field-Programmable Logic and Appli-

cations, Oxford, United Kingdom, 1995, pp. 439{448.

[7] B. Radunovi�c and V. Milutinovi�c, \A Survey of Recon-

�gurable Computing Architectures," in Proc. 8th Int'l.

Workshop on Field-Programmable Logic and Application,

Tallin, Estonia, 1998, pp. 376{385.

[8] B. Kastrup et al., \Seeking (the right) Problems for the

Solutions of Recon�gurable Computing," in Proc. 9th Int'l.

Workshop on Field-Programmable Logic and Applications,

Glasgow, Scotland, 1999, pp. 520{525.

[9] R.D. Wittig and P. Chow, \OneChip: An FPGA Pro-

cessor With Recon�gurable Logic," in Proc. IEEE Symp.

on FPGAs for Custom Computing Machines, Napa Valley,

California, 1996, pp. 126{135.

[10] J.A. Jacob and P. Chow, \Memory Interfacing and In-

struction Speci�cation for Recon�gurable Processors," in

Proc. 7th Int'l. Symp. on Field Programmable Gate Arrays,

Monterey, California, 1999, pp. 145{154.

[11] G.A. Blaauw and F.P. Brooks, Jr., Computer Architecture.

Concepts and Evolution, Addison-Wesley, 1997.

[12] T.G. Rauscher and P.M. Adams, \Microprogramming:

A Tutorial and Survey of Recent Developments," IEEE

Transactions on Computers, vol. C-29, no. 1, pp. 2{20,

1980.

[13] M. Bolotski et al., \Unifying FPGAs and SIMD Arrays,"

in Proc. 2nd Int'l. Workshop on FPGAs, Berkeley, Cali-

fornia, 1994, pp. 1{10.

[14] S. Hauck, \The Roles of FPGA's in Reprogrammable Sys-

tems," Proc. IEEE, vol. 86, no. 4, pp. 615{638, 1998.

[15] P.M. Athanas and H.F. Silverman, \Processor Recon�g-

uration through Instruction-Set Metamorphosis," IEEE

Computer, vol. 26, no. 3, pp. 11{18, 1993.

[16] M. Wazlowski et al., \PRISM-II Compiler and Architec-

ture," in Proc. IEEE Workshop on FPGAs for Custom

Computing Machines, Napa Valley, California, 1993, pp.

9{16.

[17] M. Wazlowski, A Recon�gurable Architecture Superscalar

Coprocessor, Ph.D. thesis, Brown University, Providence,

Rhode Island, 1996.

[18] S.M. Trimberger, \Reprogrammable Instruction Set Ac-

celerator," U.S. Patent No. 5,737,631, 1998.

[19] T. Miyamori and K. Olukotun, \A Quantitative Analy-

sis of Recon�gurable Coprocessors for Multimedia Appli-

cations," in Proc. IEEE Symp. on FPGAs for Custom

Computing Machines, Napa Valley, California, 1998, pp.

2{11.

[20] J.R. Hauser and J. Wawrzynek, \Garp: A MIPS Processor

with a Recon�gurable Coprocessor," in Proc. IEEE Symp.

on FPGAs for Custom Computing Machines, Napa Valley,

California, 1997, pp. 12{21.

[21] A. Donlin, \Self Modifying Circuitry - A Platform for

Tractable Virtual Circuitry," in Proc. 8th Int'l. Workshop

on Field-Programmable Logic and Applications, Tallin, Es-

tonia, 1998, pp. 199{208.

[22] M.J. Wirthlin et al., \The Nano Processor: A Low Re-

source Recon�gurable Processor," in Proc. IEEE Work-

shop on FPGAs for Custom Computing Machines, Napa

Valley, California, 1994, pp. 23{30.

[23] K.L. Gilson, \Integrated Circuit Computing Device Com-

prising a Dynamically Con�gurable Gate Array Having a

Microprocessor and Recon�gurable Instruction Execution

Means and Method Therefor," U.S. Patent No. 5,361,373,

1994.

[24] Z. Salcic and B. Maunder, \CCSimP { An Instruction-

Level Custom-Con�gurable Processor for FPLDs," in

Proc. 6th Int'l. Workshop on Field-Programmable Logic

and Applications, Darmstadt, Germany, 1996, pp. 280{

289.



Sima, Vassiliadis, Cotofana, van Eijndhoven, Vissers: CCM TAXONOMY 93

[25] R.W. Hartenstein et al., \A Novel Paradigm of Paral-

lel Computation and its Use to Implement Simple High-

Performance Hardware," Future Generation Computer

Systems, no. 7, pp. 181{198, 1991/1992.

[26] R. Razdan and M.D. Smith, \A High Performance Mi-

croarchitecture with Hardware-Programmable Functional

Units," in Proc. 27th Annual Int'l. Symp. on Microar-

chitecture { MICRO-27, San Jose, California, 1994, pp.

172{180.

[27] B. Kastrup et al., \ConCISe: A Compiler-Driven CPLD-

Based Instruction Set Accelerator," in Proc. IEEE Symp.

on FPGAs for Custom Computing Machines, Napa Valley,

California, 1999, pp. 92{100.

[28] M.J. Wirthlin and B.L. Hutchings, \A Dynamic Instruc-

tion Set Computer," in Proc. IEEE Symp. on FPGAs

for Custom Computing Machines, Napa Valley, California,

1995, pp. 99{109.

[29] S.M. Trimberger, \Reprogrammable Instruction Set Accel-

erator Using a Plurality of Programmable Execution Units

and an Instruction Page Table," U.S. Patent No. 5,748,979,

1998.

[30] S. Hauck et al., \The Chimaera Recon�gurable Functional

Unit," in Proc. IEEE Symp. on FPGAs for Custom Com-

puting Machines, Napa Valley, California, 1997, pp. 87{96.

[31] S.M. Casselman, \Virtual Computing and the Virtual

Computer," in Proc. IEEE Workshop on FPGAs for Cus-

tom Computing Machines, Napa Valley, California, 1993,

pp. 43{48.

[32] A. Lew and R. Halverson, Jr., \A FCCM for Dataow

(Spreadsheet) Programs," in Proc. IEEE Symp. on FPGAs

for Custom Computing Machines, Napa Valley, California,

1995, pp. 2{10.

[33] C.R. Rupp et al., \The NAPA Adaptive Processing Ar-

chitecture," in Proc. IEEE Symp. on FPGAs for Custom

Computing Machines, Napa Valley, California, 1998, pp.

28{37.

[34] S. Sawitzki et al., \Increasing Microprocessor Performance

with Tightly-Coupled Recon�gurable Logic Arrays," in

Proc. 8th Int'l. Workshop on Field-Programmable Logic

and Applications, Tallin, Estonia, 1998, pp. 411{415.

[35] C. Alippi et al., \A DAG-Based Design Approach for Re-

con�gurable VLIW Processors," in Proc. IEEE Design

and Test Conf. in Europe, Munich, Germany, 1999, pp.

778{780.

[36] D. Jones and D.M. Lewis, \A Time-Multiplexed FPGA

Architecture for Logic Emulation," in Proc. IEEE 1995

Custom Integrated Circuits Conf., Santa Clara, California,

1995, pp. 487{494.

[37] D.C. Cronquist et al., \Architecture Design of Recon�g-

urable Pipelined Datapaths," Advanced Research in VLSI,

pp. 23{40, 1999.

[38] R.A. Bittner and P.M. Athanas, \Wormhole Run-time

Recon�guration," in Proc. 5th Int'l. Symp. on Field Pro-

grammable Gate Arrays, Monterey, California, 1997, pp.

79{85.

[39] R.W. Hartenstein et al., \A New FPGA Architecture for

Word-Oriented Datapaths," in Proc. 4th Int'l. Workshop

on Field-Programmable Logic and Applications, Prague,

Czech Republic, 1994, pp. 144{155.

[40] Srihari Cadambi et al., \Managing Pipeline-

Recon�gurable FPGAs," in Sixth International Sym-

posium on Field Programmable Gate Arrays, Monterey,

California, 1998, pp. 55{64.

[41] C. Iseli and E. Sanchez, \A Superscalar and Recon�g-

urable Processor," in Proc. 4th Int'l. Workshop on Field-

Programmable Logic and Applications, Prague, Czech Re-

public, 1994, pp. 168{174.

[42] M. Sima et al., \A Taxonomy of Custom Computing Ma-

chines," Technical report, Delft University of Technology,

Delft, The Netherlands, (to be published).


