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Abstract— This paper presents the implementation of an
8-point Inverse Discrete Cosine Transform (IDCT) comput-
ing resource on a TriMedia/CPU64 FPGA-based Reconfig-
urable Functional Unit (RFU). TriMedia/CPU64 is a 64-bit
5 issue-slot VLIW processor launching a long instruction ev-
ery clock cycle. The RFU consists mainly of an FPGA core,
and is embedded into the TriMedia as any other hardwired
functional unit, i.e., it receives instructions from the instruc-
tion decoder, reads its input arguments from and writes the
computed values back to the register file. To reduce the
computational complexity of IDCT, we used a modified ver-
sion of the Loeffler algorithm which requires 14 multipli-
cations. Since each multiplicand is a 16-bit signed number
represented in 2’s complement notation, while each multi-
plier is a positive constant of 15 bits or less, we employed
a ”multiplication-by-constant” scheme which was optimized
against the multiplier. To increase the throughput of the
IDCT computing resource, we propose a pipeline implemen-
tation. When mapped on an ACEX EP1K100 FPGA-based
RFU, our 8-point IDCT computing resource exhibits a la-
tency of 16 TriMedia cycles, a recovery of 2 cycles, and oc-
cupies 42% of the logic cells of the device.

Keywords— Reconfigurable computing, inverse discrete
cosine transform, VLIW processors, field-programmable
gate array.

I. INTRODUCTION

A common issue addressed by computer architects is the
range of performance improvements that may be achieved
by augmenting a general purpose processor with a recon-
figurable core [1], [2], [3], [4], [5], [6], [7]. The basic
idea of such approach is to exploit both the general pur-
pose processor capability to achieve medium performance
for a large class of applications, and FPGA flexibility to
implement application-specific computations. This paper
presents the implementation of an 8-point Inverse Discrete
Cosine Transform (IDCT) computing resource on a TriMe-
dia/CPU64 FPGA-based Reconfigurable Functional Unit
(RFU). TriMedia/CPU64 is a 64-bit 5 issue-slot VLIW
processor launching a long instruction every clock cycle.
The RFU consists mainly of an FPGA core, and is embed-
ded into the TriMedia as any other hardwired functional

unit, i.e., it receives instructions from the instruction de-
coder, reads its input arguments from and writes the com-
puted values back to the register file. With such RFU, the
user can define and use any computing facility subject to
the FPGA size and TriMedia organization.

IDCT is a highly computational intensive part of MPEG
decoding, and is used in the JPEG decompression of data
as well. To reduce the computational complexity of IDCT,
we used a modified version of the Loeffler algorithm [11]
which requires 14 multiplications. Since each multipli-
cand is a 16-bit signed number represented in 2’s com-
plement notation, while each multiplier is a positive con-
stant of 15 bits or less, we employed a ”multiplication-by-
constant” scheme which was optimized against the mul-
tiplier. In order to increase the throughput of the IDCT
computing resource, we propose a pipeline implementa-
tion. When mapped on an ACEX EP1K100 FPGA-based
RFU, our 8-point IDCT computing resource exhibits a la-
tency of 16 TriMedia cycles, a recovery of 2 cycles, and
occupies 42% of the logic cells of the device.

The paper is organized as follows. For background pur-
pose, we briefly present the most important issues related
to IDCT theory and architecture of the reconfigurable core
in Section II. Section III briefly describes the architectural
extension of TriMedia/CPU64. Implementation issues of
the 1-D IDCT computing resource on FPGA, as well as
experimental results are presented in Section IV. Section
V completes the paper with some conclusions and closing
remarks.

II. BACKGROUND

In this section, we briefly present a theoretical back-
ground of IDCT. We also review the architecture of the
FPGA we used as an experimental reconfigurable core.

Inverse Discrete Cosine Transform.The Inverse Dis-
crete Cosine Transform has found wide applications in
image processing, data compression, filtering, and other
fields. The transformation for an N point 1-D IDCT is de-
fined by [9]:
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where Xu are the inputs, xi are the outputs, and
Ku =

p
1=2 for u = 0, otherwise is1. One of the most

efficient algorithms for computing an 8-point IDCT has
been proposed by Loeffler [10]. A slightly different ver-
sion of the Loeffler algorithm in which the

p
2 factors are

moved around has been proposed by van Eijndhoven and
Sijstermans [11]. Subsequently, we will use this modified
algorithm (see Figure 1).
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Fig. 1. The modified ‘Loeffler’ algorithm – [11].

In the figure, the round block signifies a multiplication
by C 0

0
=
p

1=2. The butterfly block and the associated
equations are presented in Figure 2.
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Fig. 2. The butterfly – [10].

A square block depicts a rotation which transforms a
pair [I0; I1] into [O0; O1]. The symbol of a rotator and the
associated equations are presented in Figure 3.
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Fig. 3. The rotator – [10].

Although an implementation of such a rotator with three
multiplications and three additions is possible (Fig. 4 – a,

b), we used the direct implementation of the rotator with
four multiplications and two additions (Fig. 4 – c), because
it shortens critical path and improves numerical accuracy.
Indeed, there are three operations (two additions and a
multiplication) on the critical path of the implementations
with three multipliers, while the critical path of the imple-
mentation with four multipliers contains only two opera-
tions (a multiplication and an addition). Also, the initial
addition involved by the three-multiplier implementations
may lead to an overflow when fixed-point arithmetic is car-
ried out.

The FPGA architecture. Field-Programmable Gate
Arrays (FPGA) [12] are devices which can be configured
in the field by the end user. In a general view, an FPGA
is composed of two constituents:Raw Hardware andCon-
figuration Memory. The function performed by the raw
hardware is defined by the information stored into config-
uration memory. In the sequel, we will assume that the
architecture of the raw hardware is identical with that of
an ACEX 1K device from Altera [13]. Our choice could
allow future single-chip integration, since both ACEX 1K
FPGAs and TriMedia are manufactured in the same TSMC
technological process.

Briefly, an ACEX 1K device contains an array of Logic
Cells, each including a 4-input Look-Up Table (LUT), a
relative small number of Embedded Array Blocks, each
EAB being actually a RAM block with 8 inputs and 16
outputs, and an interconnection network. In order to
have a general view, we mention that the logic capacity
of the ACEX 1K family ranges from 576 logic cells for
EP1K10 device to 4992 logic cells for EP1K100 device.
The maximum operating frequency for synchronous de-
signs mapped on an ACEX 1K FPGA is 180 MHz. More
details regarding the architecture and operating modes of
ACEX 1K devices, as well as data sheet parameters can be
found in [13].

The next section describes the architectural extension
for the TriMedia-CPU64.

III. T RIMEDIA ARCHITECTURAL EXTENSION

TriMedia-CPU64 is a 64-bit 5 issue-slot VLIW core,
launching a long instruction every clock cycle [8]. It has
a uniform 64-bit wordsize through all functional units, the
register file, load/store units, on-chip highway and external
memory. Each of the five operations in a single instruc-
tion can in principle read two register arguments and write
one register result every clock cycle. In addition, each
operation can be guarded with an optional (4th) register
for conditional execution without branch penalty. The ar-
chitecture supports subword parallelism and is optimized
with respect to media-processing. With the exception of
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Fig. 4. Three possible implementations of the rotator

floating point divide and square root unit, all functional
units have a recovery of 1, while their latency ranges from
1 to 4 The TriMedia-CPU64 VLIW core also supports
double-slot operations, or super-operations. Such a super-
operation occupies two adjacent slots in the VLIW instruc-
tion, and maps to a double-width functional unit. This way,
operations with more than 2 arguments and one result are
possible. The current organization of the TriMedia/CPU64
core is presented in Figure 5.

unit

unit

128 registers 64 bit

Instruction Decoder

Global Register File

15 read ports + 5 write ports

Bypass Network
functional

double-width
functional

Fig. 5. TriMedia/CPU64 organization – [8].

In the sequel, we will assume that the TriMedia/CPU64
processor is augmented with a Reconfigurable Functional
Unit (RFU) which consists mainly of a reconfigurable ar-
ray core. A hardwired Configuration Unit which manages
the reconfiguration of the raw hardware is associated to the
RFU, as depicted in Figure 6. The reconfigurable func-
tional unit is embedded into TriMedia as any other hard-
wired functional unit, i.e., it receives instructions from the
instruction decoder, reads its input arguments from and
writes the computed values back to the register file. In
this way, only minimal modifications of the basic architec-
ture, and also of the associated compiler and scheduler are
required.

In order to use the RFU, a kernel of new instructions
is needed. This kernel constitutes the extension of the
TriMedia/CPU64 instruction set architecture [14]. Gener-
ally speaking, the reconfiguration of the RFU is performed
under the command of aSET instruction, whileEXECUTE

instructions launch the operations to be performed by the
computing resources configured on the raw hardware [15].
In this way, the execution of an RFU-mapped operation
requires two basic stages:SET andEXECUTE.

CONFIGURATION UNIT

SET

RAW HARDWARE

Configurable Computing
Resources (Facilities)

CONFIGURATION

MEMORY

RECONFIGURABLE FUNCTIONAL UNIT (FPGA)

EXECUTE

Configuring
Resources (Facilities)

CONFIGURATION

Fig. 6. The architectural extension for TriMedia/CPU64 VLIW
core – [14].

With such architectural extension, the user is given the
freedom to define and use any computing facility subject to
the FPGA size and TriMedia organization. In the sequel, a
single RFU-related operation which computes an 8-point
IDCT will be defined. We will present the implementa-
tion details of the 8-point IDCT computing facility on the
FPGA, the achieved performance, and the associated costs
in terms of FPGA area.

IV. EXPERIMENTAL RESULTS

As mentioned, an 8-point IDCT 2-slot computing re-
source will be mapped on the RFU. By launching an 8-
point IDCT super-operation having two 64-bit inputs and
two 64-bit outputs, an 8-point 1-D IDCT is computed on
eight 16-bit values. The RFU is configured at application
launch-time, i.e., aSET instruction is scheduled on the top
of the program code of the application. An ACEX 1K
FPGA from Altera will be used as an experimental plat-
form for the reconfigurable core.

A pipelined FPGA implementation of 1-D IDCT hav-
ing a recovery of1 implies that the FPGA clock frequency
is equal with the TriMedia clock frequency. Nowadays,
the current TriMedia clock frequency is greater than200
MHz, while the maximum allowable clock frequency for
ACEX 1K is 180 MHz. Therefore, an 1-D IDCT hypothet-
ical implementation having a recovery of1 is not a realistic



scenario, and a recovery of2 or more is mandatory for the
time being. In the sequel, we will assume a recovery of2
for 1-D IDCT and a200 MHz TriMedia. This implies that
the pipelined implementation of 1-D IDCT will work with
a clock frequency of100 MHz.

Implementation issues of the 1-D IDCT.All the op-
erations required to compute 1-D IDCT are implemented
using 16-bit fixed-point arithmetic. Referring again to Sec-
tion II, and to Figures 1, 3, and 4, since the 1-D IDCT
requires14 multiplications, an efficient implementation of
each multiplication is of crucial importance. For all multi-
plications, the multiplicand is a 16-bit signed number rep-
resented in 2’s complement notation, while the multiplier
is a positive constant of 15 bits or less.

A general multiplication scheme for which both mul-
tiplicand and multiplier are unknown at the implementa-
tion time exhibits the largest flexibility at the expenses of
higher latency and larger area. If one of the operands is
known at the implementation time, the flexibility of the
general scheme becomes useless, and a customized imple-
mentation of the scheme will lead to an improved latency
and area. A scheme which is optimized against one of
the operands is referred to asmultiplication-by-constant.
Since such a scheme is more appropriate for our applica-
tion, we will use it subsequently.

To implement the multiplication-by-constant scheme,
we built a partial product matrix, where only the rows cor-
responding to a ‘1’ in the multiplier are filled in. Then,
reduction schemes which fit into a pipeline stage running
at 100 MHz are sought. It should be emphasized that a
reduction algorithm which is optimum on a certain FPGA
family may not be appropriate for a different family.

In connection with the partial product matrix, measured
performances of several reduction modules for ACEX 1K
are presented in Table I. All the values in the ta-
ble correspond to synchronous designs, i.e., both in-
puts and outputs are registered. The estimations have
been obtained by compiling VHDL source codes with
Leonardo Spectrum™from Exemplar, followed by a place
and route procedure performed by MAX+PLUS II™from
Altera. Since the maximum operating frequency for
the ACEX 1K is 180 MHz for the time being, we
will proceed to a conservative assumption and consider
the figures typed in italics as being too optimistic, al-
though they are generated by software tools. The fol-
lowing settings of the software tools have been used:
(1) Leonardo-Spectrum™:Lock LCELLs: NO, Map Cas-
cades: YES, Extended Optimization Effort, Optimize
for Delay, Hierarchy: Flatten, Add I/O Pads: NO;
(2) MaxPlus-II: WYSIWYG, Optimize = 10 (Speed); (3)
MaxPlus-II:FAST, Optimize = 10 (Speed).

TABLE I
PERFORMANCES OF SEVERAL REDUCTION MODULES FOR

ACEX 1K SPEEDGRADE �1.

Performance
Reduction module fmax– MHz
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Two-operand 136 140 140
Three-operand 16-bit 104 107 117
Four-operand adder 104 103 109
Five-operand 84 81 81
Six-operand 84 76 76

Two-operand 24-bit 112 114 114
Three-operand adder 89 94 94
Four-operand 89 86 90

Two-operand 28-bit 102 103 103
Three-operand adder 83 85 83
Four-operand 83 77 81

Two-operand 30-bit 98 102 102
Three-operand adder 88 93 91

Five-operand 3-bit 108 147 138
Six-operand adder 108 131 121

Seven-operand 108 128 116

Five-operand 4-bit 105 126 113
Six-operand adder 105 126 107

Seven-operand 105 111 114

Five-operand 6-bit 101 113 107
Six-operand adder 101 97 105

Seven-operand 101 94 97

Three inputs Dadda 231 250 250
Four inputs population 228 250 250
Five inputs counter 155 175 169
Six inputs 155 188 188

In order to implement an IDCT at100 MHz, reduction
modules which can run at100 MHz or more should be
considered. These modules are summarized below:
� Horizontal reductions of two, three, or four 16-bit lines
to one line (Fig. 7 – a).
� Horizontal reduction of only two 30-bit lines to one line
(Fig. 7 – b).
� Vertical reductions of three or four 7-bit columns to one
line (Fig. 7 – c).
� Vertical reductions of six 5- or 6-bit columns to one line
(Fig. 7 – d).
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Fig. 7. 100 MHz reduction modules on ACEX 1K.

As a general rule, a horizontal reduction module consumes
a lower area than a vertical reduction module of the same
size. This situation occurs because a horizontal reduction
module can intensively use the carry chain, while a verti-
cal reduction module cannot. A second observation is that
Dadda population counters [16] of 3 or 4 bits can be im-
plemented in only one logic level, i.e., with a delay of0:6
ns [13] with two, respectively three LUTs. Also, Dadda
counters of 5 or 6 bits can be implemented in two cas-
caded logic levels which exhibit a total delay of1:2 ns,
with seven LUTs. Although Dadda counters could theo-
retically be used as a reduction technique working at the
same frequency with TriMedia, i.e., minimum200 MHz,
such an approach is limited by the maximum operating fre-
quency of the ACEX 1K FPGAs:180 MHz.

Reduction modules which can run at100 MHz have
been determined. Regarding the implementation we will
present the reduction steps for all multiplications. In order
to implement 16-bit fixed-point arithmetic, both the mul-
tiplicand and multiplier have been properly scaled so that
values remain representable with 16 bits and 15 bits, re-
spectively, while preserving the highest possible precision
[17]. Also, only the most significant 16 bits of the product

have to be stored.
The partial product matrix and the selected reduction

modules and steps for multiplication by the constantC 0

0
=

5a82 h are presented in Figure 8 (’S’ represents the sign-
bit). In the first step, the partial product matrix is built.
Then, reductions on the modules specified by the shaded
areas are carried out. The first stage generates four binary
numbers of different lengths result, which are reduced to
one row in the second stage. Therefore, a multiplication
by the constantC 0

0
including rounding is performed in two

pipeline stages.
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Fig. 8. The partial product matrix and the selected reduction
steps for multiplication by the constantC 0

0

The partial product matrix and the selected reduction
modules and steps for multiplication by the constantC 0

1
=

58c5 h are presented in Figure 9. The reduction is per-
formed in a horizontal way, two lines at a stage. Therefore,
a multiplication by the constantC 0

1
is performed in three

stages. The multiplication by the constantC 0

1
proved too

difficult to be implemented in two stages only.
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Fig. 9. The partial product matrix and the selected reduction
steps for multiplication by the constantC 0

1

The partial product matrix and the selected reduction
modules and steps for multiplication by the constantsS0

1
=

11a8 h, C 0

3
= 4b42 h, S0

3
= 3249 h, C 0

6
= 22a3 h,

and S0

6
= 539f h are presented in Figures 10, 11, 12,

13, and 14, respectively. Concerning multiplication by
constantS0

6
, some comments are worth to be provided.



In order to reduce the number of ‘1’ in the multiplier
S0

6
and, consequently, the number of rows in the corre-

sponding partial product matrix, the Booth’s recoding [16]
will pe applied. That is, the multiplierS0

6
is rewritten as

S0

6
= 5420 h � 0081 h, and the rows in the partial product

matrix corresponding to0081 h will be subtracted rather
than added when being reduced.
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We would like to note that the critical path of the 1-D
IDCT is located on the odd part of the modified ‘Loef-
fler’ algorithm. Once the multiplication by constantC 0

1

is performed in three stages, there is no gain in perfor-
mance to implement the other three multiplications, i.e.,
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by constantsS0

1
, C 0

3
, S0

3
, in less than three stages. There-

fore, the multiplications by the constantsS0

1
, C 0

3
, S0

3
are

implemented in three stages also, even though they may al-
low for an efficient (timing) implementation in two stages,
too (however, at the expense of a slightly larger area). The
same considerations apply for multiplications by the con-
stantsC 0

6
andS0

6
, as both of them are not located on the

critical path.
The sketch of the 1-D IDCT pipeline is depicted in Fig-

ure 15 (the roman numerals specify the pipeline stages).
Considering the critical path, the latency of the 1-D IDCT
is composed of:

� one TriMedia cycle for reading the input operands from
the register file into the input flip-flops of the 1-D IDCT
computing resource;
� two FPGA cycles for computing the multiplication by
constantC 0

0
;

� one FPGA cycle for computing all additions to rotatorsp
2C1 and

p
2C3.

� three FPGA cycles for computing the multiplication by
constantC 0

1
;

� one FPGA cycle for computing the additions in the last
stage of the transform;
� one TriMedia cycle for writing back the results from the
1-D IDCT’s output flip-flops to the register file.
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Therefore, the latency of the 8-point 1-D IDCT operation
is 1 + (2 + 1 + 3 + 1)� 2 + 1 = 16 TriMedia cycles. We
evaluated that 1-D IDCT uses42% of the logic elements
of an ACEX EP1K100 device and 257 I/O pins.

V. CONCLUSIONS AND FUTURE WORK

We described an architectural extension for TriMe-
dia/CPU64 which encompasses a reconfigurable func-
tional unit and the associated instructions. We proved that
a resource which can compute the 8-point IDCT in 16
TriMedia cycles can be configured on the reconfigurable
functional unit.42% of the logic cells of an EP1K100 de-
vice has been used to implement the 8-point IDCT. In fu-
ture work, we intend to implement an appropriate round-
ing scheme in order to fulfill the IEEE numerical accuracy
requirements for IDCT in MPEG applications.
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