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Abstract— This paper presents the implementation of
a Variable Length Decoder (VLD) on a TriMedia/CPU64
(FPGA-based) Reconfigurable Functional Unit (RFU). The
VLD decodes run-level symbols coded as Variable-Length
Codes (VLC) following the MPEG standard. The RFU
consists mainly of an Altera FPGA core, and is embedded
into the TriMedia as any other hardwired functional unit,
i.e., it receives instructions from the instruction decoder,
reads its input arguments from and writes the computed
values back to the register file. Variable-length decoding is
an awkward computational part of MPEG decoding. Since
the location of a symbol in the stream depends of the data
which precedes it, every symbol has to be decoded before
the following one can be. In order to balance the complex-
ity and the efficiency of the RFU-mapped decoder, we pro-
pose a VLD computing facility which returns a single VLC
symbol (run/level pair or end-of-block) per operation.
Briefly, the VLD is implemented as a parallel lookup into
FPGA’s Electronic Array Blocks (EAB), followed by a
selection of the proper result. Since each EAB can imple-
ment a lookup table of 8 inputs, the VLC symbols have been
partitioned into classes according to this FPGA architec-
tural characteristic. When mapped on an ACEX EP1K100
FPGA, our VLD computing resource exhibits a latency of 7
TriMedia cycles, and uses 6 EABs and 16% of the logic cells
of the device.

Keywords— Reconfigurable computing, variable-length
decoder, VLIW processors, field-programmable gate array.

I. INTRODUCTION

A common issue addressed by computer architects is the
range of performance improvements that may be achieved
by augmenting a general purpose processor with a recon-
figurable core. The basic idea of such approach is to
exploit both the general purpose processor capability to
achieve medium performance for a large class of appli-
cations, and FPGA flexibility to implement application-
specific computations.

This paper presents the implementation of a Variable-
Length Decoder (VLD) on a TriMedia/CPU64 FPGA-
based Reconfigurable Functional Unit (RFU). TriMe-
dia/CPU64 is a 64-bit 5 issue-slot VLIW processor launch-
ing a long instruction every clock cycle. The RFU consists

mainly of an FPGA core, and is embedded into the TriMe-
dia as any other hardwired functional unit, i.e., it receives
instructions from the instruction decoder, reads its input
arguments from and writes the computed values back to
the register file. With such RFU, the user is given the free-
dom to define and use any computing facility subject to the
FPGA size and TriMedia organization.

Variable-length decoding is an awkward computational
part of MPEG decoding. Since the location of a VLC sym-
bol in the stream depends of the data which precedes it,
every symbol has to be decoded before the following one
can be. In other words, the entire MPEG stream must be
decoded serially. In order to balance the complexity and
the efficiency of the RFU-mapped decoder, we propose a
VLD computing facility which returns a single VLC sym-
bol (run/level pair orend-of-block) per operation. Briefly,
the VLD is implemented as a parallel lookup into FPGA’s
Electronic Array Blocks (EAB), followed by a selection of
the proper result. Since each EAB can implement a lookup
table of 8 inputs, the VLC symbols have been partitioned
into classes according to this FPGA architectural charac-
teristic. When mapped on an ACEX EP1K100 FPGA, our
VLD computing resource exhibits a latency of 7 cycles,
and uses 6 EABs and 16% of the logic cells of the device.

The paper is organized as follows. For background pur-
pose, we briefly present the most important issues related
to VLD theory and architecture of the reconfigurable core
in Section II. Section III outlines the architectural exten-
sion of TriMedia/CPU64. Implementation issues of the
VLD computing resource on FPGA are presented in Sec-
tion IV. Section V completes the paper with some conclu-
sions and closing remarks.

II. BACKGROUND

Data compression is the reduction of redundancy in data
representation, carried out for decreasing data storage re-
quirements and data communication costs. A typical video
codec system is presented in Figure 1 [1], [2]. The lossy
source coder performs filtering, transformation (such as
Discrete Cosine Transform (DCT), subband decomposi-
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Fig. 1. The block diagram of a generic video codec – adapted from [1], [2].

tion, or differential pulse-code modulation), quantization,
etc. The output of the source coder still exhibits various
kinds of statistical dependencies. The (lossless) entropy
coder exploits the statistical properties of data and removes
the remaining redundancy after the lossy coding.

In MPEG, the DCT is used as a lossy coding technique.
The DCT algorithm processes the video data in blocks of
8 � 8, decomposing each block into a weighted sum of
64 spatial frequencies. At the output of DCT, the data
is also organized in8 � 8 blocks of coefficients, each
coefficient representing the contribution of a spatial fre-
quency for the block being analyzed. Following a zig-zag
path, the matrix is transformed into a vector of coefficients,
and further compressed by an entropy coder which con-
sists of two major parts: Run-Length Coder (RLC) and
Variable-Length Coder (VLC). The RLC represents con-
secutive zeros by their run lengths; thus the number of
samples is reduced. The RLC output data are compos-
ite words, also referred to assource symbols, which de-
scribe pairs ofzero-run lengthsand valuesof quantized
DCT coefficients. When all the remaining coefficients in
a vector are zero, they are all coded by the special symbol
end-of-block. Variable length coding, also known as Huff-
man coding, is a mapping process between source symbols
andvariable length codewords. The variable length coder
assigns shorter codewords to frequently occuring source
symbols, and vice versa, so that the average bit rate is
reduced. In order to achieve maximum compression, the
coded data is sent through a continuous stream of bits with
no specific guard bit assigned to separate between two con-
secutive symbols. As a result, decoding procedure must
recognize the code length as well as the symbol itself.

Subsequently, we will briefly present the theoretical
background of variable-length decoding.

A. Variable-Length Decoder

The input to VLD is the encoded bit stream, and the
output is the decoded symbols. Since the code length of
the symbol is variable, both the input and output bit rate of
the decoder cannot be kept constant. As described in [1],
three different decoder types are possible: constant input
rate, constant output rate, and variable input-output rate.

The constant-input-rate VLD decodes a fixed number
of bits and produces a variable number of symbols per unit

time. An example of such decoder which decodes one bit
per cycle is described in [3]. The decoder employs a binary
tree search technique in which a token is propagated in a
reverse Huffman tree constructed from the original codes.
Although some improvements of the tree-based method
make it possible to decode more than one bit per cycle [4],
the tree-based approaches are not suitable for high perfor-
mance applications such as high-definition television, be-
cause high clock rate processing is needed.

A constant-output-rate VLD decodes one symbol per
cycle regardless of its length [5]. Generally speaking, a
constant-output-rate VLD contains a look-up table which
receives the variable-length code itself as the address. The
decoded symbol (run-level pair or end-of-block) and the
codeword length are generated in response to that address.
Since the longest codeword excluding Escape has 17 bits,
the LUT size could reach 131072 (= 2

17) words for a di-
rect mapping of all possible codewords.

A variable-input-output-rate VLD is a mixture of the
first two VLDs. It is implemented as a repeated table look-
up, each step decoding a variable size chunk of bits. If
a valid code was encountered, a run/level pair or an end-
of-block is generated. If a miss is detected, a chunk size
for the next look-up is generated. In this way, the short
(most probable) symbols are preferentially decoded. A
variable-input-output-rate VLD exhibits an acceptable de-
coding throughput, while the size of the look-up table is
resonable small.

We conclude this section with a review on the architec-
ture of the FPGA we used as an experimental reconfig-
urable core.

B. The FPGA architecture

Field-Programmable Gate Arrays (FPGA) [6] are de-
vices which can be configuredin the field by the end user.
In a general view, an FPGA is composed of two con-
stituents:Raw Hardware andConfiguration Memory. The
function performed by the raw hardware is defined by the
information stored into configuration memory. In the se-
quel, we will assume that the architecture of the raw hard-
ware is identical with that of an ACEX 1K device from
Altera [7]. Our choice could allow future single-chip in-
tegration, since both ACEX 1K FPGAs and TriMedia are
manufactured in the same TSMC technological process.



Briefly, an ACEX 1K device contains an array of Logic
Cells, each including a 4-input Look-Up Table (LUT), a
relative small number of Embedded Array Blocks, each
EAB being actually a RAM block with 8 inputs and 16
outputs, and an interconnection network. In order to have
a general view, we mention that the logic capacity of the
ACEX 1K family ranges from 576 logic cells and 3 EABs
for EP1K10 device to 4992 logic cells and 12 EABs for
EP1K100 device. The maximum operating frequency for
synchronous designs mapped on an ACEX 1K FPGA is
180 MHz. More details regarding the architecture and op-
erating modes of ACEX 1K devices, as well as data sheet
parameters can be found in [7].

III. A N ARCHITECTURAL EXTENSION FOR

TRIMEDIA/CPU64

TriMedia-CPU64 is a 64-bit 5 issue-slot VLIW core,
launching a long instruction every clock cycle [8]. It has
a uniform 64-bit wordsize through all functional units, the
register file, load/store units, on-chip highway and external
memory. Each of the five operations in a single instruc-
tion can in principle read two register arguments and write
one register result every clock cycle. In addition, each
operation can be guarded with an optional (4

th) register
for conditional execution without branch penalty. The ar-
chitecture supports subword parallelism and is optimized
with respect to media-processing. With the exception of
floating point divide and square root unit, all functional
units have a recovery of 1, while their latency ranges from
1 to 4 The TriMedia-CPU64 VLIW core also supports
double-slot operations, or super-operations. Such a super-
operation occupies two adjacent slots in the VLIW instruc-
tion, and maps to a double-width functional unit. This way,
operations with more than 2 arguments and one result are
possible.

As described in [9], TriMedia-CPU64 processor is aug-
mented with a Reconfigurable Functional Unit (RFU)
which consists mainly of a reconfigurable array core. A
hardwired Configuration Unit managing the reconfigura-
tion of the raw hardware is associated to the RFU, as de-
picted in Figure 2. The reconfigurable functional unit is
embedded into the TriMedia as any other hardwired func-
tional unit, i.e., it receives instructions from the instruc-
tion decoder, reads its input arguments from and writes the
computed values back to the register file.

In order to use the RFU, a kernel of new instructions is
provided [9]. The new instructions areSET andEXECUTE.
Generally speaking, the reconfiguration of the RFU is per-
formed under the command of theSET instruction, while
EXECUTE instructions launch the operations to be per-
formed by the computing resources configured on the raw

hardware [10].
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Fig. 2. Architectural extension for TriMedia-CPU64 VLIW
core – [9].

The user is given a set ofEXECUTE instructions encom-
passing different operation patterns: single- or multi-slot
operations, operations with an immediate argument, etc.
It is the responsibility of the user to choose the appropri-
ate EXECUTE instruction corresponding to the pattern of
the operation to be executed. Since the semantics of an
operation performed by a RFU-mapped computing facil-
ity, its latency, recovery, and slot-assignment are all user-
definable, the source code of the application should con-
tain information to augment the Machine Description File
[11]. This information is needed by the scheduler to sched-
ule the newly defined operations, and can be specified by
annotating the source code. For more details, we refer the
reader to bibliography [9].

The next section will present the sintax and semantics
of the VLD instruction, as well as implementation issues
of the corresponding computing facility.

IV. VLD INSTRUCTION AND COMPUTING FACILITY

As with all hardwired computing resources, the la-
tency of an RFU-configured computing resource should
be known at compile time. Therefore, only aconstant-
output-rate VLD should be considered if the whole de-
coder was to be implemented on FPGA. With such de-
coder, no benefits from preferentially decoding the short
(most probable) symbols can be achieved. In particular,
we decided to configure on the FPGA a VLD computing
resource which returns a DCT symbol (run/level pair or
end-of-block) per call. A super-operation pattern with two
input (Rx, Ry) and two output (Rz, Rw) registers is as-
signed to the variable-length decoder:

VLD Rx, Ry ! Rz, Rw

The Rx register specifies the decoding parameters: AC/DC
coefficient, luminance/chrominance block, intra/non-intra
macroblock, MPEG-1/MPEG-2 compression standard,
B14/B15 VLC decoding table [2]. The second register, Ry,
contains 64 bits of the VL compressed data. The decoded
symbol and its code length will be stored into registers Rz,
while the register Rw will hold some control information.



TABLE I
VLD – THE FORMAT OF THE FIRST ARGUMENT(PARAMETER) REGISTER– RX (U I N T32 ).

Field name Acronym Width Position Type Range Description
(bit) (bit) (TriMedia)

Decoding parameters dec param 32 31 : : : 0 uint32
Not used – 27 31 : : : 5 n.a. n.a.
MPEG standard mpeg s 1 4 bit f0; 1g = 1 for MPEG-2
Intra VLC format i vlc f 1 3 bit f0; 1g = 0 for B14 table
Intra/PB intra pb 1 2 bit f0; 1g = 1 for intra macroblock
Luma/Chroma y c 1 1 bit f0; 1g = 1 for luminance
DC/AC Coefficient dc ac 1 0 bit f0; 1g = 1 for DC coefficient

TABLE II
VLD – THE FORMAT OF THE SECOND ARGUMENT REGISTER– RY (U I N T64 ).

Field name Acronym Width Position Type Range Description
(bit) (bit) (TriMedia)

MPEG string – 64 63 : : :0 uint64 n.a. The first bit of the MPEG string
is the most-significant bit

TABLE III
VLD – THE FORMAT OF THE RETURNED VALUE IN REGISTERRZ (V E C64 U B).

Field name Acronym Width Position Type Range Description
(bit) (bit) (TriMedia)

Not used 32 63 : : : 32 n.a. n.a.

Level level 16 31 : : : 16 int16 Extracted as two ui nt8.
Run run 8 15 : : : 8 uint8
Code-length codelength 8 7 : : : 0 uint8 0 : : : 28

Since the VLD does not know the start of the next variable-
length codeword until the current codeword is decoded, a
newVLD operation can be launched only after the current
one has completed. Consequently, a recovery lower than
the latency gives no advantages, and such implementation
should not be sought. The formats of the registers Rx, Ry,
Rz, Rw are shown in Tables I, II, III, and IV.

Generally speaking, a constant-output-rate VLD com-
putes the symbol code length by looking-up the 17 lead-
ing bits of the incoming bit stream into a look-up table.
The decoder then sends the code length and the leading
bits to other feed-forward circuitry for further decoding
and immediately shifts the input by a number of bits equal
with code length, to prepare the next decoding cycle. In
cases where the number of symbols is large, there are some
bits, referred to asprefix), that are common to long VLCs,
called By exploiting these common prefixes, the size of the
LUT can be reduced because the prefixes are no longer re-
dundant in the LUT [12], [13], [14]. The basic idea of pre-
fix precoding is to group the VLCs by their common pre-

fixes, and to provide for LUTs, one for each group, which
can decode codewords only in the corresponding group.
The selection of the group is performed by means of addi-
tional circuits (an extra LUT in the mentioned papers).

Since a single EAB of an ACEX 1K device can imple-
ment a lookup table of 8 inputs, we partitioned the VLC
table according to this FPGA architectural characteristic,
as presented in Table V. In order to reduce the latency, the
implementation of the VLD makes use of theadvanced
computation. Therun andlevel for each and every group
were decoded in parallel, as the valid symbol would be-
long to that group. Also in parallel, the code length of the
symbol along with someselection signals are determined.
Finally, the selection of the proper run and level pair is
carried out. The implementation is presented in Figure 3.

Regarding the groups 1, 2, and 3, a number of 1, 6, and
9 leading bits are shifted out from thesame VLC string, re-
spectively. The three new resulted strings are each sent to a
different EAB, and three run/level pairs are generated as if
the shifted leading bits would have been those mentioned



TABLE IV
VLD – THE FORMAT OF THE RETURNED VALUE IN REGISTERRW (V E C64 U B).

Field name Acronym Width Position Type Range Description
(bit) (bit) (TriMedia)

Not used – 32 63 : : : 32 n.a. n.a.

Not used – 8 31 : : : 24 uint8 n.a.
Exit controls – 8 23 : : : 16 uint8

valid decode valid decode 1 19 bit f0; 1g = 1 when valid decode
error error 1 18 bit f0; 1g = 1 when error
EOB EOB 1 17 bit f0; 1g = 1 when end-of-block
exit flag exit flag 1 1 16 bit f0; 1g = 1 when exit condition

Not used – 8 15 : : :8 uint8 n.a.
Exit flag – 8 7 : : : 0 uint8 f0; 1g

exit flag exit 1 1 bit f0; 1g = 1 exit condition

TABLE V
THE PARTITIONING OF THEVLC CODES OFDCT COEFFICIENTS INTO GROUPS AND CLASSES.

Name of No. of symbols Class / Leading Code length Bypassed Effective address
the group in the class bit-sequence bit-sequence length

DC Group 0 2 1 1 + s – n.a.

End-of-block 1 10 2 – n.a.
AC Group 0 2 11 2 + s – n.a.

Escape 1 0000 01 6 + 18/(14,22) – n.a.
2 011 3 + s 3
4 010 4 + s 4
4 0011 5 + s 5

Group 1 2 0010 1 5 + s 0 5
8 0001 6 + s 6
8 0000 1 7 + s 7
16 0010 0 8 + s 8
16 0000 001 10 + s 5

Group 2 32 0000 0001 12 + s 0000 00 7
32 0000 0000 1 13 + s 8
32 0000 0000 01 14 + s 6

Group 3 32 0000 0000 001 15 + s 0000 0000 0 7
32 0000 0000 0001 16 + s 8

in the columnBypassed header. By means of combinato-
rial circuits, the same procedure is carried out for groups
0, end-of-block, and escape.

Each of the leading bit-sequence which define the VLC
class is decoded by a multiple-input gate. Once the class is
detected, a multiplexer will select the proper output from
the outputs of EABs, EOB detector, Escape detector, and
Group 0 decoding. The code length of the decoded symbol
is generated according to the detected class.

By simulation with Altera tools, we found that the
FPGA-based VLD operation has a latency of 7 TriMedia
cycles. 6 EABs and 16% of the logic cells of an EP1K100
device are used.

V. CONCLUSIONS

We have described the implementation of a VLD com-
puting facility on a TriMedia/CPU64 reconfigurable func-
tional unit. The VLD computing facility can decode one
variable-length codeword per call, and exhibits a a latency
of 7 TriMedia cycles. 6 embedded array blocks and 16%
of the logic cells of an ACEX EP1K100 are used by the
VLD computing facility.
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