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Abstract. The paper presents a case study on augmenting a TriMedia/CPU64
processor with a Reconfigurable (FPGA-based) Functional Unit (RFU). We first
propose an extension of the TriMedia/CPU64 architecture, which consists of a
RFU and its associated instructions. Then, we address the computation of the
8� 8 IDCT on such extended TriMedia, and propose a scheme to implement an
8-point IDCT operation on the RFU. Further, we address the decoding of Vari-
able Length Codes and describe the FPGA implementation of a Variable Length
Decoder (VLD) computing facility. When mapped on an ACEX EP1K100 FPGA
from Altera, our 8-point IDCT exhibits a latency of 16 and a recovery of 2 Tri-
Media cycles, and occupies 42% of the FPGA’s logic array blocks. The proposed
VLD exhibits a latency of 7 TriMedia cycles when mapped on the same FPGA,
and utilizes 6 of its embedded array blocks. By using the 8-point IDCT computing
facility, an8�8 IDCT including all overheads can be computed with the through-
put of 1/32 IDCT/cycle. Also, with the proposed VLD computing facility, a single
DCT coefficient can be decoded in 11 cycles including all overheads. Simulation
results indicate that by configuring each of the 8-point IDCT and VLD computing
facilities on a different FPGA context, and by activating the contexts as needed,
the augmented TriMedia can perform MPEG macroblock parsing followed up by
a pel reconstruction with an improvement of 20-25% over the standard TriMedia.

1 Introduction

A common issue addressed by computer architects is the range of performance im-
provements that may be achieved by augmenting a general purpose processor with a
reconfigurable core. The basic idea of such approach is to exploit both the general pur-
pose processor capability to achieve medium performance for a large class of applica-
tions, and FPGA flexibility to implement application-specific computations. Thus far
FPGA-augmented processors have predominantly assumed a simple general purpose
core [1–4]. Considering the class of VLIW machines, two general research questions
may be raised:



– What are the influences of reconfigurable arrays on the performance ofcommer-
cially availableVLIW processors?

– What are the architectural changes needed for incorporating the reconfigurable ar-
ray into the processor core?

In an attempt to answer to these questions, we will present a case study on augment-
ing a TriMedia/CPU64 processor with a Reconfigurable (FPGA-based) Functional Unit
(RFU). With such RFU, the user is given the freedom to define and use any computing
facility subject to the FPGA size and TriMedia/CPU64 organization. In order to evaluate
the potential performance of the augmented TriMedia/CPU64, we chose a significant
chunk of MPEG decoding as benchmark. In particular, since the video data accounts
for more than 80% of the whole MPEG bit stream [5], we considered the parsing of
Variable-Length (VL) coded data at the macroblock layer followed by a pel reconstruc-
tion procedure as benchmark. That is, all thedata elementscorresponding to slice and
higher layers are considered as being constants for our experiment.

We decided to provide hardware support for two functions of the selected bench-
mark: 8-point (1-D) Inverse Discrete Cosine Transform (IDCT) and Variable-Length
Decoder (VLD). By developing VHDL code and mapping it with Altera tools, we
evaluated the performance of these FPGA-based functions. Further, a program which
is MPEG-compliant has been written in C, and then compiled, scheduled and finally
simulated with TriMedia tool-chain. For a typical MPEG string with 10% intra-coded,
70% B-coded, and 20% P-coded macroblocks, we found that the augmented TriMe-
dia/CPU64 can perform macroblock parsing followed up by a pel reconstruction with
an improvement of 20-25 % over the standard TriMedia. Given the fact that TriMe-
dia/CPU64 is a 5 issue-slot VLIW processor with 64-bit datapaths and a very rich mul-
timedia instruction set, such an improvement within the target media processing domain
indicates that the hybrid TriMedia/CPU64 + FPGA is a feasible approach.

The paper is organized as follows. For background purposes, we briefly present
several issues concerning MPEG and the FPGA architecture in Section 2. Section 3 de-
scribes the architectural extension of TriMedia/CPU64. Implementation issues related
to 1-D IDCT and VLD computing facilities and their corresponding instructions are dis-
cussed in Sections 4 and 5. The8� 8 IDCT and entropy decoder implementations are
then described in Sections 6 and 7. The execution scenario of the chosen benchmark on
both standard and extended TriMedia, and experimental results are presented in Section
8. Section 9 completes the paper with some conclusions and closing remarks.

2 Background

Data compression is the reduction of redundancy in data representation, carried out for
decreasing data storage requirements and data communication costs. A typical video
codec system is presented in Figure 1 [6, 5]. The lossy source coder performs filtering,
transformation (such as DCT, subband decomposition, or differential pulse-code mod-
ulation), quantization, etc. The output of the source coder still exhibits various kinds of
statistical dependencies. The (lossless) entropy coder exploits the statistical properties
of data and removes the remaining redundancy after the lossy coding.
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Fig. 1. The block diagram of a generic video codec – adapted from [6, 5].

In MPEG, the DCT-Quantization pair is used as a lossy coding technique. The DCT
algorithm processes the video data in blocks of8 � 8, decomposing each block into
a weighted sum of 64 spatial frequencies. At the output of DCT, the data is also or-
ganized in8 � 8 blocks of coefficients, each coefficient representing the contribution
of a spatial frequency for the video block being analyzed. Since the human eye can-
not readily perceive high spatial frequency activity, a quantization step is carried out.
The goal is to force as many DCT coefficients as possible to zero, especially those cor-
responding to high spatial frequencies, within the boundaries of the prescribed video
quality. Then, a zig-zag operation transforms the matrix into a vector in which the co-
efficients are ordered from the lowest frequencies (upper-left hand corner of the8 � 8
block) to the higher ones (lower-right hand corner of the matrix). Usually, this vector
exhibits large numbers of consecutive zeros. The subsequent compression step is car-
ried out by the entropy coder which consists of two major parts: Run-Length Coder
(RLC) and Variable-Length Coder (VLC). The RLC represents consecutive zeros by
their run lengths. Since not each and every zero is coded, the number of samples is
reduced. The RLC output data are composite words, also referred to assource symbols,
which describe pairs of zero-run lengths and quantized DCT coefficient values. When
all the remaining coefficients in a vector are zero, they are all coded by the special sym-
bol end-of-block. Variable length coding, also known as Huffman coding, is a mapping
process between source symbols andvariable length codewords. The variable length
coder assigns shorter codewords to frequently occuring source symbols, and vice versa,
so that the average bit rate is reduced. In order to achieve maximum compression, the
coded data is sent through a continuous stream of bits with no specific guard bit as-
signed to separate between two consecutive symbols. As a result, decoding procedure
must recognize the code length as well as the symbol itself in this case.

Subsequently, we will focus on the MPEG decoding, i.e., on the inverse operation
of MPEG coding. Further, we will briefly present the theoretical background of Inverse
Discrete Cosine Transform (IDCT), entropy decoding, as well as some issues related to
the MPEG standard.

2.1 Inverse Discrete Cosine Transform

The transformation for an N point 1-D IDCT is defined by [7]:

xi =
2

N

N�1X

u=0

KuXu cos
(2i+ 1)u�

2N

whereXu are the inputs,xi are the outputs, andKu =
p
1=2 for u = 0, otherwise

is 1. For MPEG, a 2-D IDCT processes an8� 8 matrixX [5]:
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One strategy to compute the 2-D IDCT is the standard row-column separation. The
2-D transform is performed by applying the 1-D transform to each row (horizontal
IDCTs) and subsequently to each column (vertical IDCTs) of the data matrix. This
strategy can be combined with different 1-D IDCT algorithms to further reduce the
computational complexity. One of the most efficient 1-D IDCT algorithms has been
proposed by Loeffler [8]. A slightly different version of the Loeffler algorithm in which
the
p
2 factors are moved around has been proposed by van Eijndhoven and Sijstermans

[9]. In our experiment, we will use this modified algorithm (see Figure 2).
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Fig. 2.The modified ’Loeffler’ algorithm – from [9].

In the Figure, the round block signifies a multiplication byC 0

0
=
p
1=2. The but-

terfly block and the associated equations are presented in Figure 3.
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Fig. 3. The butterfly – from [8].

A square block depicts a rotation which transforms a pair[I0; I1] into [O0; O1]. The
symbol of a rotator and the associated equations are presented in Figure 4. Although an
implementation of such a rotator with three multiplications and three additions is pos-
sible [8], we use the direct implementation of the rotator with four multiplications and
two additions, since it shortens critical path and improves numerical accuracy. There-
fore, multiplications by constantsC 0

0
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have to be carried out.

For more details regarding this problem, we refer the reader to the bibliography [10].
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2.2 Entropy Decoder

In MPEG, the entropy decoder consists a Variable-Length Decoder (VLD) followed
by a Run-Length Decoder (RLD). The input to the VLD is the incoming encoded bit
stream, and the output is the decoded symbols. Since the code length of the symbol is
variable, both the input and output bit rate of a VLD cannot be kept constant. Three
different decoder types are possible [6]: constant input rate, constant output rate, and
variable input-output rate.

Theconstant-input-rate VLD decodes a fixed number of bits and produces a vari-
able number of symbols per unit time. An example of such decoder which decodes one
bit per cycle is described in [11]. The decoder employs a binary tree search technique
in which a token is propagated in a reverse Huffman tree constructed from the origi-
nal codes. Although some improvements of the tree-based method make it possible to
decode more than one bit per cycle [12], the tree-based approaches are not suitable for
high performance applications such as high-definition television, because high clock
rate processing is needed.

A constant-output-rate VLD decodes one codeword (symbol) per cycle regardless
of its length [13]. Generally speaking, a constant-output-rate VLD contains a look-up
table which receives the variable-length code itself as the address. The decoded symbol
(run-level pair or end-of-block) and the codeword length are generated in response to
that address. Since the longest codeword excluding Escape has 17 bits, the LUT size
could reach 131072 (= 217) words for a direct mapping of all possible codewords.

A variable-input-output-rate VLD is a mixture of the first two VLDs. It is imple-
mented as a repeated table look-up, each step decoding a variable size chunk of bits. If
a valid code was encountered, a run/level pair or an end-of-block is generated. If a miss
is detected, a chunk size for the next look-up is generated. In this way, the short (most
probable) are preferentially decoded. A variable-input-output-rate VLD exhibits an ac-
ceptable decoding throughput, while the size of the look-up table is resonable small.

The run-length decoder passes the VLC-decoded codewords through if they are not
run-length codes, otherwise it outputs the specified number of zeros.

2.3 Macroblock parsing and pel reconstruction

The macroblock parsing process reads the VL coded data string from which all the head-
ers corresponding to slice and higher layers have been removed, and outputs various
symbols:decoding parameters at the macroblock layer (macroblockaddressincrement,
macroblocktype, codedblock pattern, andquantizerscale), motion values, andcom-
posite symbols (run/levelpairs andendof block). The decoding of the Variable-Length
Codes (VLC) is performed according to a set of VLC tables defined by the MPEG



standard. The motion values are used by a motion compensation process which is not
considered here. However, since these values are decoded during the macroblock pars-
ing, the overhead associated with the decoding of the motion values will be taken into
consideration in the subsequent experiment.

Following the macroblock parsing, a pel reconstruction process recreates8� 8 ma-
trices of pels. The pel reconstruction module is depicted in Figure 5. Its functionality is
as follows. First,8 � 8 matrices of DCT quantized coefficients are recreated by a Ma-
trix Reconstruction module. Second, an inverse quantization (InvQ) is performed. An
8 � 8 quantization table, and a multiplicative quantization factor (quantizerscale) are
used in the InvQ process. Third, a DC prediction unit reconstructs the DC coefficient in
intra-coded macroblocks. Finally, an IDCT is performed. In connection with Figure 5
and the subsequent experiment, we would like to mention that the VLC decoder and
IDCT will benefit from reconfigurable hardware support.
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Fig. 5. Macroblock parsing and pel reconstruction module – adapted from [5].

We conclude this section with a review on the architecture of the FPGA we used as
an experimental reconfigurable core.

2.4 The FPGA architecture.

Field-Programmable Gate Arrays (FPGA) [14] are devices which can be configuredin
the field by the end user. In a general view, an FPGA is composed of two constituents:
Raw Hardware andConfiguration Memory. The function performed by the raw hard-
ware is defined by the information stored into the configuration memory. Generally
speaking, a multiple-context FPGA [15] is an FPGA having the configuration mem-
ory replicated in order to contain several configurations for the raw hardware. That is,
a multiple-context FPGA contains an on-chip cache of raw hardware configurations,
which are referred to ascontexts. Such a cache allows a context switch to occur on the
order of nanoseconds [16]. However, loading a new configuration from off-chip is still
limited by low off-chip bandwidth.

In the sequel, we will assume that the architecture of the raw hardware is identical
with that of an ACEX 1K device from Altera [17]. Our choice could allow future single-



chip integration, since both ACEX 1K FPGAs and TriMedia are manufactured in the
same TSMC technological process. Briefly, an ACEX 1K device contains an array of
Logic Cells, each including a 4-input Look-Up Table (LUT), a relative small number of
Embedded Array Blocks, each EAB being actually a RAM block with 8 inputs and 16
outputs, and an interconnection network. In order to have a general view, we mention
that the logic capacity of the ACEX 1K family ranges from 576 logic cells and 3 EABs
for EP1K10 device to 4992 logic cells and 12 EABs for EP1K100 device. The maxi-
mum operating frequency for synchronous designs mapped on an ACEX 1K FPGA is
180 MHz. More details regarding the architecture and operating modes of ACEX 1K
devices, as well as data sheet parameters can be found in [17].

3 An architectural extension for TriMedia/CPU64

TriMedia/CPU64 is a 64-bit 5 issue-slot VLIW core [18], launching a long instruc-
tion every clock cycle. It has a uniform 64-bit wordsize through all functional units,
the register file, load/store units, on-chip highway and external memory. Each of the
five operations in a single instruction can (in principle) read two register arguments
and write one register result. The architecture supports subword parallelism and is op-
timized with respect to media processing. With the exception of floating point divide
and square root, all functional units have a recovery1 of 1, while their latency2 ranges
from 1 to 4. The TriMedia/CPU64 VLIW core also supports multi-slot operations, or
super-operations. Such a super-operation occupies two neighboring slots in the VLIW
instruction, and maps to a double-width functional unit. This way, operations with more
than 2 arguments and/or more than one result are possible.

First we propose that the TriMedia/CPU64 processor is augmented with a Recon-
figurable Functional Unit (RFU) which consists mainly of a multiple-context FPGA
core. A hardwired Configuration Unit which manages the reconfiguration of the raw
hardware is associated to the reconfigurable functional unit, as it is depicted in Figure
6. The reconfigurable functional unit is embedded into TriMedia as any other hardwired
functional unit is, i.e., it receives instructions from the instruction decoder, reads its in-
put arguments from and writes the computed values back to the register file. In this way,
only minimal modifications of the basic architecture are required.

In order to use the RFU, a kernel of new instructions is needed. This kernel consti-
tutes the extension of the TriMedia/CPU64 instruction set architecture we propose. It
includes the following instructions:SET CONTEXT, ACTIVATE CONTEXT, andEXECUTE.
Loading a context information into the RFU configuration memory is performed under
the command of aSET CONTEXT instruction. TheACTIVATE CONTEXT instruction con-
trols the swaping of the active configuration with one of the idle on-chip configuration.
The operations performed by the computing resources configured on the raw hardware
are launched byEXECUTE instructions. In this way, the execution of an RFU-mapped
operation requires three basic stages: set, activate, and execute [19].

The user is given a number ofEXECUTE instructions which encompass different
operation patterns: single- or double-slot operations, operations with an immediate ar-

1 Minimum number of clock cycles between the issue of successive operations.
2 Clock cycles between the issue of an operation and availability of its results.
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gument, etc. It is the responsibility of the user to choose the appropriateEXECUTE in-
struction corresponding to the pattern of the operation to be executed. At the source
code level, this may be done setting up analias, as it is described subsequently. Since
theEXECUTE instructions are executed on the RFU without checking of the active con-
figuration, it is still the responsibility of the user to perform the management of the
active and idle configurations.

For the semantics of an operation performed by a computing facility, its latency,
recovery, and slot assignment are all user definable, the source code of the application
should contain information to augment the Machine Description File [20]. Assuming
for example a user-definedVLD instruction, a way to specify such information is to
annotate the source code as follows:

.alias VLD EXEC3 ; specifies the aliasEXECUTE 3

; (super-op with two inputs and outputs)
.latency VLD 7 ; specifies the VLD latency
.recovery VLD 7 ; specifies the VLD recovery
.slot VLD 1+2 ; specifies the slot assignment

; of the VLD instruction

In a similar way, the user can define as many RFU-related instructions as he/she wants.
The next section will present the sintax and semantics of the 1-D IDCT and VLD

instructions, as well as implementation issues of the corresponding computing facilities.

4 1-D IDCT instruction and computing facility

Since the standard TriMedia provides a good support for transposition and matrix stor-
age, we expect to get little benefit if we configure the entire 2-D IDCT into FPGA.
Our goal is to balance the cost of storing the intermediate 2-D IDCT results into an
FPGA-resident transpose matrix memory against obtaining free slots into TriMedia.
Consequently, only a super-operation computing the 1-D IDCT of eight 16-bit values
packed in two 64-bit registers is considered. The sintax of such operation is:

1-D IDCT Rx, Ry ! Rz, Rw



where the registers Rx and Ry specify the inputs, and Rz and Rw, the outputs. All
registers Rx, Ry, Rz, and Rw encompass the common format presented in Table 1.

Table 1.1-D IDCT – The common format of registers Rx, Ry, Rz, and Rw (vec64sh ).

Field nameAcronym Width Position Type RangeDescription
(bit) (bit) (TriMedia)

1st value – 16 63 : : : 48 int16 – –

2nd value – 16 47 : : : 32 int16 – –

3rd value – 16 31 : : : 16 int16 – –

4th value – 16 15 : : : 0 int16 – –

Since there are no dependencies in computing the 1-D IDCT on each row (column)
of the8�8 matrix, a pipelined 1-D IDCT is desirable. A recovery of 1 of such comput-
ing resource implies that the FPGA clock frequency is equal with the TriMedia clock
frequency. Nowadays, the current TriMedia clock frequency is greater than 200 MHz,
while the maximum allowable clock frequency for ACEX 1K is 180 MHz. Therefore,
an 1-D IDCT hypothetical implementation having a recovery of 1 is not a realistic sce-
nario, and a recovery of 2 or more is mandatory for the time being. In the sequel, we
will assume a recovery of 2 for 1-D IDCT and a 200 MHz TriMedia. This implies that
the pipelined implementation of 1-D IDCT will work with 100 MHz clock frequency.

All the operations required to compute 1-D IDCT are implemented using 16-bit
fixed-point arithmetic. Since an implementation of the rotator with four multiplications
is preferred [10], the computation of 1-D IDCT requires14 multiplications. As all the
multiplications are to be performed in parallel, an efficient implementation of each mul-
tiplication is of crucial importance. For all multiplications, the multiplicand is a 16-bit
signed integer represented in 2’s complement notation, while the multiplier is a positive
integer constant of 15 bits or less. As claimed in [21], these word lengths in connec-
tion with fixed-point arithmetic are sufficient to fulfill the IEEE numerical accuracy for
IDCT in MPEG applications [22].

A general multiplication scheme for which both multiplicand and multiplier operands
are unknown at the implementation time exhibits the largest flexibility at the expenses
of higher latency and larger area. If one of the operands is known at the implementation
time, the flexibility of the general scheme becomes useless, and a customized imple-
mentation of the scheme will lead to improved latency and area. A scheme which is op-
timized against one of the operands is referred to asmultiplication-by-constant. Since
such a scheme is more appropriate for our application, we will use it subsequently.

To implement the multiplication-by-constant scheme, we built a partial product ma-
trix, where only the rows corresponding to a ‘1’ in the multiplier operand are filled in.
Then, reduction schemes which fit into a pipeline stage running at100 MHz are sought.
It should be emphasized that a reduction algorithm which is optimum on a certain FPGA
family may not be optimum for a different family.



In connection with the partial product matrix, reduction modules which can run at
100 MHz when mapped on an ACEX 1K are presented in Figure 7. All the designs
are synchronous, i.e., both inputs and outputs are registered. The estimations have been
obtained by compiling VHDL source codes with Leonardo SpectrumTM from Exemplar,
followed by a place and route procedure performed by MAX+PLUS IITM from Altera.
The100 MHz reduction modules are summarized below:

– Horizontal reductions of three, or four 16-bit lines to one line (Fig. 7 – a).
– Horizontal reduction of only two 30-bit lines to one line (Fig. 7 – b).
– Vertical reductions of three or four 7-bit columns to one line (Fig. 7 – c).
– Vertical reductions of six 5- or 6-bit columns to one line (Fig. 7 – d).

31 25 20 15 10 5 0
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31 25 20 15 10 5 0 31 25 20 15 10 5 0
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31 25 20 15 10 5 0
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Fig. 7. 100 MHz reduction modules on ACEX 1K.

We do not go into details about the implementations of the multipliers and we refer
the reader to [10]. We still mention the latency of each multiplier:�C 0

0
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The sketch of the 1-D IDCT pipeline is depicted in Figure 8 (the Roman numerals
specify the pipeline stages). Considering the critical path, the latency of the 1-D IDCT
is composed of:

– one TriMedia cycle for reading the input operands from the register file into the
input flip-flops of the 1-D IDCT computing resource;

– two FPGA cycles for computing the multiplication by constantC 0

0
;

– one FPGA cycle for computing all additions to rotators
p
2C1 and

p
2C3.

– three FPGA cycles for computing the multiplication by constantC 0

1
;

– one FPGA cycle for computing the additions in the last stage of the transform;
– one TriMedia cycle for writing back the results from the output flip-flops of the

1-D IDCT computing resource into the register file.

Therefore, the latency of the 8-point 1-D IDCT operation is1+(2+1+3+1)�2+1 =
16 TriMedia cycles. We evaluated that 1-D IDCT uses42% of the logic elements of an
ACEX EP1K100 device and 257 I/O pins.
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5 VLD instruction and computing facility

As mentioned in Section 3, computing resources which can perform rather complex op-
erations are worth to be implemented on the RFU. Also, as with all hardwired comput-
ing resources, the latency of an RFU-configured computing resource should be known
at compile time. Therefore, we will subsequently consider a VLD instruction which re-
turns a DCT symbol (run/level pair orend-of-block) per execution. That is, a constant-
output-rate VLD is to be employed. With such decoder, no benefits from preferentially
decoding the short (most probable) codewords can be achieved.

A super-operation pattern with two input (Rx, Ry) and two output (Rz, Rw) registers
is assigned to the variable-length decoder:

VLD Rx, Ry ! Rz, Rw

Table 2.VLD-1 – The format of the first argument (parameter) register – Rx (uint32 ).

Field name Acronym Width Position Type RangeDescription
(bit) (bit) (TriMedia)

Decoding parametersdec param 32 31 : : : 0 uint32 –
Not used – 27 31 : : : 5 n.a. n.a.
MPEG standard mpeg s 1 4 bit f0; 1g = 1 for MPEG-2
Intra VLC format i vlc f 1 3 bit f0; 1g = 0 for B14 table
Intra/PB intra pb 1 2 bit f0; 1g = 1 for intra macroblock
Luma/Chroma y c 1 1 bit f0; 1g = 1 for luminance
DC/AC Coefficient dc ac 1 0 bit f0; 1g = 1 for DC coefficient

The Rx register specifies the decoding parameters which identify the type of the symbol
to be decoded: AC/DC, luminance/chrominance, intra/non-intra, as well as whether the
string is an MPEG-1 or MPEG-2 one, or whether the decoding table is B14 or B15
[5]. The second register, Ry, contains 64 bits of the VL compressed data. The decoded
symbol and its code length will be stored into registers Rz and Rw, respectively. Since



Table 3.VLD-1 – The format of the second argument register – Ry (uint64 ).

Field name Acronym Width Position Type RangeDescription
(bit) (bit) (TriMedia)

MPEG string – 64 63 : : : 0 uint64 n.a. The first bit of the MPEG string
is the most-significant bit

Table 4.VLD-1 – The format of the returned value in register Rz (vec64ub ).

Field name Acronym Width Position Type RangeDescription
(bit) (bit) (TriMedia)

Not used 32 63 : : : 32 any n.a.

Level level 16 31 : : : 16 int16 – Extracted as two uint8.
Run run 8 15 : : : 8 uint8 –
Code-lengthcodelength 8 7 : : : 0 uint8 –

Table 5.VLD-1 – The format of the returned value in register Rw (vec64ub ).

Field name Acronym Width Position Type RangeDescription
(bit) (bit) (TriMedia)

Not used – 32 63 : : : 32 any n.a.

Not used – 8 31 : : : 24 uint8 n.a.
Exit controls – 8 23 : : : 16 uint8 –

valid decodevalid decode 1 19 bit f0; 1g = 1 when valid decode
error error 1 18 bit f0; 1g = 1 when error
EOB EOB 1 17 bit f0; 1g = 1 when end-of-block
exit flag exit flag 1 1 16 bit f0; 1g = 1 when exit condition

Not used – 8 15 : : : 8 uint8 n.a.
Exit flag – 8 7 : : : 0 uint8 f0; 1g

exit flag exit 1 1 bit f0; 1g = 1 exit condition

the VLD does not know the start of the next variable-length codeword until the current
codeword is decoded, a newVLD operation can be launched only after the previous one
has completed. Consequently, a recovery lower than the latency gives no advantages,
and such implementation should not be sought. The formats of the registers Rx, Ry, Rz,
Rw are shown in Tables 2, 3, 4, and 5.

Generally speaking, a constant-output-rate VLD computes the codeword length by
looking-up the 17 leading bits of the incoming bit stream into a look-up table. The de-
coder then sends the code length and the leading bits to other feed-forward circuitry for
further decoding and immediately shifts the input by a number of bits equal withcode
length, to prepare the next decoding cycle. In cases where the number of codewords is
large, there are some bits that are common to the long VLC’s, calledprefix. By exploit-
ing these common prefixes, the size of the LUT can be reduced because the prefixes are
no longer redundant in the LUT [23, 24]. The basic idea of prefix precoding is to group



the VLC’s by their common prefixes, and to provide for LUTs, one for each group,
which can decode codewords only in the corresponding group.

Since a single EAB of an ACEX 1K device can implement a lookup table of 8 in-
puts, we partitioned the VLC table according to this FPGA architectural characteristic,
as presented in Table 6.

Table 6.The partitioning of the VLC codes of AC coefficients into groups and classes.

Name of No. of symbolsClass / Leading Code length Bypassed Effective address
the group in the class bit-sequence bit-sequence length

DC Group 0 2 1 1 + s – n.a.

End-of-block 1 10 2 – n.a.
AC Group 0 2 11 2 + s – n.a.

Escape 1 0000 01 6 + 18/(14,22) – n.a.
2 011 3 + s 3
4 010 4 + s 4
4 0011 5 + s 5

Group 1 2 0010 1 5 + s 0 5
8 0001 6 + s 6
8 0000 1 7 + s 7
16 0010 0 8 + s 8
16 0000 001 10 + s 5

Group 2 32 0000 0001 12 + s 0000 00 7
32 0000 0000 1 13 + s 8
32 0000 0000 01 14 + s 6

Group 3 32 0000 0000 001 15 + s 0000 0000 0 7
32 0000 0000 0001 16 + s 8

In order to reduce the latency, the implementation of the VLD makes use of ad-
vanced computation. The run and level for each and every group were decoded in par-
allel, as the valid symbol would belong to that group. In parallel, the code length of the
symbol along with someselection signals are determined. Then, the selection of the
proper run and level pair is carried out. The implementation is presented in Figure 9.

Regarding the groups 1, 2, and 3, one, six, and nine leading bits are shifted out
from the original VLC string, respectively. The three resulted strings are each sent to a
different EAB, and three run/level pairs are generated as if the shifted leading bits would
have been those mentioned in the columnBypassed header. By means of combinatorial
circuits, the same procedure is carried out for groups 0, end-of-block, and escape.

Each of the leading bit-sequence which define the VLC class is decoded by a
multiple-input gate. Once the class is detected, a multiplexer will select the proper out-
put from the outputs of EABs, EOB detector, Escape detector, and Group 0 decoding.
The code length of the decoded symbol is generated according to the detected class.

By simulation, we found that the FPGA-based VLD operation exhibits a latency of
7 TriMedia cycles. 6 EABs of an ACEX EP1K100 device are used.
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Fig. 9. The VLD implementation on FPGA.



6 8� 8 IDCT

The functionality of the8 � 8 IDCT can be implemented in both software and recon-
figurable hardware. We will evaluate their performance subsequently.

6.1 8� 8 IDCT implementation on standard TriMedia

In the current implementation of the 2-D IDCT on the standard TriMedia/CPU64 archi-
tecture, all computations are done with 16-bit values, and make intense use of SIMD-
style operations. The8 � 8 matrix is stored in sixteen 64-bit words, each containing
a half row of four 16-bit elements. Therefore, four16-bit elements can be processed
in parallel by a single word-wide operation. Next to that, being a 5-issue slot VLIW
processor, TriMedia/CPU64 can execute 5 such operations per clock cycle.

This strategy is used for both the horizontal and vertical IDCTs. First, eight 1-D ID-
CTs (two SIMD 1-D IDCTs) are computed using the modified ‘Loeffler’ algorithm [9].
Then, the transpose of the8� 8 matrix is performed byTRANSPOSE double-slot opera-
tions. Such a unit can generate the upper respectively lower two words of a transposed
4�4 matrix in one cycle. Therefore, the8�8 matrix transpose is computed in eight ba-
sic operations. Finally, eight 1-D IDCTs (two SIMD 1-D IDCTs) are computed having
the results generated by the transposition as inputs. Following the described procedure,
a complete 2-D IDCT including all overheads (mostly composed of load and store op-
erations) can be performed in56 cycles [18].

6.2 8� 8 IDCT implementation on extended TriMedia

As described in Section 4, a super-operation which can compute the 1-D IDCT on eight
16-bit values represented as two 64-bit words is available in extended TriMedia. The
1-D IDCT operation has a latency of 16, a recovery of 2, and can be issued on the slot
pair 1+2. To calculate the 2-D IDCT, eight 1-D IDCT are firstly computed. Then, eight
TRANSPOSE super-operations are scheduled on the slot pairs 1+2 or 3+4 to transpose the
8� 8 matrix. Finally, eight 1-D IDCTs complete the 2-D IDCT. Before and after each
2-D IDCT, LOAD andSTORE operations fetch the input operands from main memory
into register file, and store the results back into memory, respectively.

In order to keep the pipeline full, back-to-back 1-D IDCT operation is needed. That
is, a new 1-D IDCT instruction has to be issued every two cycles. Since true dependen-
cies forbid issuing the last eight 1-D IDCTs of a 2-D IDCT so that to fulfill back-to-back
requirement, the 2-D IDCTs are processed in chunks of two, in an interleaved fashion.
A number of2 � 16 = 32 registers are needed for this interleaved processing pattern.
The code was manually scheduled. We found that the computational performance of
2-D IDCT exhibited a throughput of1=32 IDCT/cycle and a latency of42 cycles [10].

7 Entropy decoder

The functionality of the entropy decoder can be implemented in both software and
reconfigurable hardware. We will evaluate their performance subsequently.
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7.1 Entropy decoder implementation on standard TriMedia

The implementation of the entropy decoder in the standard TriMedia is a modified ver-
sion of that proposed in [25]. The VLD has variable input-output rate, being imple-
mented as a repeated table-lookup. Each lookup decodes a chunk of bits (8 bits at the
first level lookup), and determines if a valid code was encountered. In case of a valid
decode, a run-level pair is generated, or an escape or end-of-block flag is set. If amiss
is detected, an offset into the VLC table and a chunk-size for a second-level lookup is
generated. This process of signaling an incomplete decode and generating a new offset
may be repeated three times. When a valid symbol has been encountered, it is stored
into the8 � 8 matrix at the location defined by therun value. After compiling the C
code and scheduling procedure, we evaluated that a table lookup takes 21 cycles. Con-
sequently, the entropy decoding of a single DCT coefficient can take between 21 and
63 cycles. The size of all lookup tables is 10 KB.

7.2 Entropy decoder implementation on extended TriMedia

The entropy decoder in the extended TriMedia benefits of reconfigurable hardware sup-
port. By employing software pipelining techniques, useful computations related to run-
length decoding may be performed in the delay slots of the VLD operation. That is, the
8 � 8 empty matrix is succesively filled in withlevel values at the positions specified
by run values. In this way, a symbol is processed completely in one (fixed latency) iter-
ation. By simulation, we evaluated that a single DCT coefficient can be decoded in 11
cycles including all overheads.

8 Experimental results

In order to determine the potential impact on performance provided by the multiple-
context reconfigurable core, we will consider a benchmark which consists of a mac-
roblock parsing followed by pel reconstruction procedures. Therefore, we operate at
MPEG slice level, i.e., thedata elementson slice and above layers are assumed to be
constant. The computing scenario is presented in Figure 10. First, a variable-length de-
coding of a macroblock (header and DCT coefficients extraction) is performed. Then,
the8 � 8 matrices are recreated, and inverse quantization, followed by DC coefficient
prediction for intra-coded macroblocks are carried out. After all macroblocks in a slice
have been decoded, a burst of 2-D IDCTs is launched in order to reconstruct the initial
pels. During computation, the 1-D IDCT and VLD computing resources are activated
by anACTIVATE CONTEXT, as needed.



All the contexts of the RFU are to be configured at application load time, i.e., a
number ofSET CONTEXT instructions are scheduled on the top of the program code. A
sample of the code using the instructions of the architectural extension is presented sub-
sequently. As it can be observed, theVLD andIDCT exhibit the same execution pattern:
two inputs and two outputs.

.alias VLD EXEC3 ; alias of the VLD instruction

.alias IDCT EXEC3 ; alias of the IDCT instruction
SET CONTEXT VLD ; load context VLD
SET CONTEXT IDCT ; load context IDCT

...
ACTIVATE CONTEXT VLD ; configure VLD resource

...
VLD Rx, Ry! Rz, Rw ; execute VLD

...
ACTIVATE CONTEXT IDCT ; configure IDCT resource

...
IDCT Rx, Ry! Rz, Rw ; execute IDCT

...

Therefore, our experiment includes two approaches:pure software andFPGA-based.
As mentioned, a DCT coefficient is decoded in 21-63 cycles, and a 2-D IDCT can be
computed in 56 cycles in the pure software approach. In the FPGA-based approach,
a DCT coefficient is decoded in 11 cycles, and the 2-D IDCT is carried out with the
throughput of 1/32 IDCT/cycle. Based on the published work in the field of multiple-
context FPGAs [16], we make a conservative assumption and consider that the context
switching penality is 10 cycles.

8.1 Pel reconstruction performance evaluation

A program which is MPEG-compliant has been written in C, compiled and scheduled
with TriMedia development tools. The performance evaluation has been done assuming
that, despite of the large lookup tables which are stored into memory, the standard
TriMedia/CPU64 will never cope with a cache miss. In other words, we compare an
‘ideal-cache” standard TriMedia with a multiple-context FPGA-augmented TriMedia.

Subsequently, we present the results according to two scenarios:worst-case3 and
average-case. In both cases we assumed that an average of 5 coefficients per block
are decoded. In the worst-case scenario, we assumed that all DCT coefficients produce
a hit on the first level lookup when the pure software implementation is used. In the
same worst-case scenario, we also assumed that the overhead introduced by parsing
the macroblock headers has the largest value (for example, the quantization value is
assumed to be updated every macroblock). Since the worst-case scenario coresponds
to long variable-length codes, it is statistically not relevant. Therefore, we evaluated
the performances in a average-case scenario. In such scenario, we assumed that two
of five DCT coefficients produce amiss at the first lookup. Also, we weighted the

3 Considered from our point of view.



overhead introduced by parsing the macroblock header with the transmiting probability
of different decoding parameters of the macroblock layer. The results are presented in
Table 7. The numbers indicate the improvements we get for the number of cycles.

Table 7.Performance improvement of multiple-context FPGA-augmented TriMedia/CPU64 over
‘ideal-cache” (standard) TriMedia/CPU64 for a macroblock parsing followed by pel reconstruc-
tion application.

Worst-case scenario Average-case scenario
Intra-coded macroblocksprior to IDCT 15% 25%

after IDCT 19% 29%

P-coded macroblocks prior to IDCT 10% 21%
(1 block / macroblock) after IDCT 14% 25%

P-coded macroblocks prior to IDCT 13% 24%
(3 blocks / macroblock)after IDCT 18% 27%

B-coded macroblocks prior to IDCT 8% 17%
(1 block / macroblock) after IDCT 12% 20%

B-coded macroblocks prior to IDCT 11% 22%
(3 blocks / macroblock)after IDCT 17% 25%

Finally, we proceeded to a global evaluation of the performance improvement. For
an MPEG string with10% intra-coded,70% B-coded, and20% P-coded macroblocks,
the improvement for augmented TriMedia is20� 25% in the average-case scenario.

9 Conclusions

We have proposed an architectural extension for TriMedia/CPU64 which encompasses
a multiple-context FPGA-based reconfigurable functional unit and the associated in-
structions. On the augmented TriMedia/CPU64, we estimated a performance improve-
ment of 20 � 25% over a standard TriMedia/CPU64 for a macroblock parsing fol-
lowed by a pel reconstruction application, at the expenses of three new instructions:
SET CONTEXT, ACTIVATE CONTEXT, EXECUTE. As future work, we intend to consider
the motion compensation and to evaluate the performance improvement for a complete
MPEG decoder.
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Several considerations about the latency of an RFU-configured computing resource
are worth to be provided. Due to realization constraints, the RFU is likely to be lo-
cated far away from the Register File (RF) in the floorplan of the TriMedia/CPU64.
The immediate effect is that there will be large delays in transferring data between
the RFU and RF, and the RFU will not benefit from bypassing capabilities of the RF
[18]. Consequently,read andwrite back cycles have explicitely to be provided. In such
circumstances, the minimum latency of an RFU-based computing resource includes at
least 1 cycle for reading the input arguments from register file, the absolute minimum
combinatorial delay�FPGA on FPGA, and 1 cycle for writing back the results to the
register file. Assuming that the FPGA clock frequency is equal with half of TriMedia
clock frequency [10], the absolute minimum RFU latency is 4 TriMedia cycles. Since
a call of an RFU is quite expensive, it would be a good idea to minimize the number of
RFU calls, i.e., computing resources which can perform complex operations have to be
configured on the RFU.



Constraints and freedoms in configuring a VLD computing resource (on FPGA ??):

– Thelatency of such computing resource should be known at compiling time. There-
fore, no benefits from decoding preferentiallythe short (high probable) codewords
can be achieved.

– The latency of such computing resource should be as small as possible, as the only
way to speed up the decoding process. Pipelining is of no use here vezi articolele cu
sistemele cu reacti̧e care nu se preteaz˘a la pipelining.

– There are 12 EABs (256� 16 words) on an EP1K100 (???). Therefore, the prefix
methodology and, consequently, partitioning the VLC tables should be performed
according to this FPGA architectural caracteristic.

Generally speaking, a constant-output-rate VLD computes the codeword length by
comparing the leading bits of the incoming bit stream against a small table. The decoder
then sends the code length and the leadingbits to other feed-forward circuitry for further
decoding and immediately shifts the input by a number of bits equal withcode length,
to move to the new leading bits of the input bit stream for decoding the next codeword.

The critical path within the system is always the feedback path because other feed-
forward paths can be pipelined. That is, the processing speed is limited by the feedback
computation time: the time for comparing and selecting the codeword length plus the
time for shifting the input [pag. 198, Lin & Messerschmitt, part. II]. The latency of
computing the feedback value sets the decoding cycle time, and is thus inversely pro-
portional to the decoding rate.

The performance metric is throughput, i.e., the net decoder information rate. This
rate equals the number of bits or codewords decoded per cycle multiplied by the clock
rate. There is a trade-off between these two terms; the more bits or codewords we try to
decode in one cycle, the more complicated the PLA (look-up table !) will become and
the slower the clock rate is. Pay attention!TriMedia has a fixed clock rate, the clock
frequency is constraint, it is an input datum to the design of an MPEG decoder.

In cases where the number of codewords in the table is large, there are some bits
that are common to the long VLC’s, which we callprefix. By exploiting these common
prefixes, the size of the LUT can be reduced. A number of schemes such as prefix
precoding [Choi Lee], [Min Chong] and table partitioning [Cho Xanthopoulos...] have
been presented ...

For FPGA-2002: advanced computation of the next code length. The selection of the
proper result is performed simultaneously with the selection of the proper run and length
of the current word. Also, in parallel, computing the run and length of theprevious
codeword is carried out.


