
EMBEDDED RECONFIGURABLE SOLUTION FOR OFDM DETECTION
OVER FAST FADING RADIO CHANNELS

Mihai SIMA and Michael McGUIRE

University of Victoria – Department of Electrical and Computer Engineering
P.O. Box 3055 Stn CSC, Victoria, BC V8W 3P6, CANADA

Email: {msima,mmcguire}@ece.uvic.ca

ABSTRACT

OFDM demodulation under fast fading radio channels is very
computationally demanding, making the implementation of
Software Defined Radio (SDR) solutions problematic. A sub-
optimal demodulation algorithm based on QR decomposition
of blocks of the channel transfer matrix offers near optimal
performance at lower computational cost, but hardware sup-
port is still needed. We first propose a COordinate Rotation
DIgital Computer (CORDIC) rotator in reconfigurable hard-
ware to expose and then exploit at software level the intra-
block paralellism of the QR decomposition. In particular, we
show that although the rotator is deeply pipelined, the scale
factor inherent to CORDIC algorithm can still be distributedly
compensated throughout the pipeline at no additional cycle
time penalty. Then, for a Nios II processor augmented with
a Reconfigurable Functional Unit (RFU) that incorporates the
proposed CORDIC rotator, we also propose a computing sce-
nario that keeps all the data to be processed inside the RFU,
to minimize overhead of the data trafic between the Register
File and the CORDIC rotator. Overall, we show that OFDM
demodulation under fast-fading can be performed in fixed-
point arithmetic and in real-time on a Nios II reconfigurable
embedded system, proving that an SDR solution for OFDM
demodulation under fast fading is possible.

Index Terms— Software-defined radio, OFDM, fast fad-
ing, QR decomposition, CORDIC.

1. INTRODUCTION

The goal of an Orthogonal Frequency-Division Multiplexing
(OFDM), or any digital communications, receiver is to detect
with the lowest possible Bit Error Rate (BER) the transmitted
symbols based on the received signal. For a stationary radio
channel, the channel state matrix, H, is diagonal, and the op-
timal detection process is a division operation followed by a
hard decision for each OFDM subcarrier. If the radio chan-
nel is subject to fast fading, then the channel state matrix, H,
is a general matrix resulting in interference between different
parts of the transmitted signal [1]. In this case, more complex
channel state matrix estimation and symbol detection algo-

rithms are required. In this paper, we assume that the channel
state matrix, H, is known perfectly at the receiver. Several
techniques are available for channel estimation based on the
transmission of pilot symbols [1, 2]. For the fast fading chan-
nels of greatest interest, the computational burden for channel
estimation is much less than that of symbol detection, which
we address in the paper.

To mitigate the interference effects, symbol detection al-
gorithms for OFDM signals in fast fading require decom-
positions of the channel transfer matrix [1]. Since standard
OFDM frames include at least 128 symbols, the order of this
matrix is greater than 128, and therefore the cost of these
decompositions is prohibitive. To reduce the computational
burden required for symbol detection, suboptimal detection
schemes with BERs close to the optimal algorithm with com-
putational costs of O

(

N2
)

have been proposed [3]. These
algorithms are inherently sequential so they have unavoidable
latencies. This limitation makes the implementation of Soft-
ware Defined Radio (SDR) [4] solutions problematic.

To increase the computing power, a full-custom circuit
can be designed, but this approach is expensive, requires a
large time-to-market, and is prone to rapid obsolence due to
its lack of flexibility. To achieve hardware-like performance
with software-like programmability, an increasing number of
embedded systems are being built using Field-Programmable
Gate Arrays (FPGA), also known as reconfigurable hardware.
In a common scenario, a soft-core processor along with
programmer-defined functional units are deployed onto FPGA.
The basic idea is to exploit both the processor flexibility to
implement basic tasks (e.g., memory management and inter-
facing, load and store operations), and FPGA capability to im-
plement application-specific computations. For our analysis,
we use Stratix II FPGA [5] onto which a Nios II processor [6]
is deployed. The resulting reconfigurable computing engine
is software programmable, and thus it can provide SDR solu-
tions to wireless and mobile communication tasks. However,
since application-specific functional units are to be deployed
onto FPGA, a digital design phase has still to be carried out.

Recently, we proposed a detection algorithm with the com-
putational cost of O

(

N2
)

, that performs block QR decompo-
sition instead of a full QR decomposition of the channel trans-

fer matrix [2]. Since each block can be decomposed indepen-
dently, our strategy exhibits inter-block parallelism, enabling
the use of Single-Instruction Multiple Data (SIMD) proces-
sors [7]. In this paper, we propose a pipelined COordinate Ro-
tation DIgital Computer (CORDIC) rotator in reconfigurable
hardware to expose and then exploit the intra-block paral-
lelism of the QR decomposition. We then present a detection
scenario that makes use of both inter-block parallelism and
intra-block parallelism, and show that, for the OFDM frame
lengths of greatest interest (256 to 1024), the OFDM detec-
tion under fast fading can be performed in real time on FPGAs
using strictly fixed-point arithmetic. FPGA logic capacity re-
quirements, as well as BER versus word-length curves are
also disclosed. To summarize, the paper contributions are as
follows.

• Exposing the intra-block parallelism of the demodula-
tion process to the programmer by assisting block-wise
QR decomposition in reconfigurable hardware with a
pipelined CORDIC unit.

• Proposing a deeply pipelined CORDIC-based Givens
rotator with unity scale factor that fits into the Nios II
processor’s pipeline.

• Proposing a Reconfigurable Functional Unit (RFU) that
incorporates the proposed CORDIC rotator, along with
its associated RFU instructions that augment the in-
struction set architecture of the Nios II processor.

• Proposing a computing scenario that keeps all the data
to be processed within the RFU, in order to minimize
the data traffic between the register file and the CORDIC
rotator.

• Showing that the synergism of inter-block parallelism,
intra-block parallelism, and reconfigurable hardware ca-
pability to implement application-specific computations
makes SDR solutions for OFDM detection tasks under
fast fading feasible on embedded platforms.

Overall, we prove that the resulting workload for a typical
OFDM detection task under fast-fading can be performed on
Stratix II FPGAs. The general techniques presented in this
paper should also be useful with other FPGA families. Given
the fact that low-price FPGA devices are widely available on
the market, the approach we propose is a cost-effective SDR
solution for OFDM detection under fast fading.

The paper is organized as follows. In Section 2, we re-
call the CORDIC algorithm. In Section 3 we review OFDM
detection under fast fading. In Section 4 we present the new
CORDIC rotator. In Section 5 we describe a reconfigurable
functional unit that incorporates the proposed CORDIC ro-
tator, along with the computation scenario. In Section 6 we
provide figures for the number of required operations to per-
form OFDM detection under fast fading. Section 7 completes
the paper with some conclusions and closing remarks.

2. CORDIC ALGORITHM BACKGROUND

A Givens rotation [8] can be described by a 2-by-2 orthog-
onal matrix G(θ). The multiplication by G(θ) of a vector
[x,y]T amounts to a plane rotation of an angle θ . Historically,
the Givens rotation has been used in QR factorization, since
it can annihilate matrix elements selectively. Clearly, the sec-
ond entry of the vector [x,y]T is forced to zero by properly
choosing the angle θ [8].

Software implementation of Givens rotation is computa-
tionally demanding. Given an arbitrary vector [x,y]T , the eval-
uation of the rotation matrix, G(θ), requires two square op-
erations, one addition, one square root operation, and two di-
visions [8]. When an arbitrary angle θ is given, a large mem-
ory storing the cosine and sine tables can be used to evaluate
G(θ). Alternatively, a sequence of multiplications, additions,
and memory look-up operations can be used to evaluate Tay-
lor series expansions for cosine and sine. While a desktop
computer has sufficient hardware resourses to support these
operations, implementing the Givens rotation on an embed-
ded platform can be difficult.

COordinate Rotation DIgital Computer (CORDIC) algo-
rithm has been proposed to implement Givens rotations [9,
10]. CORDIC is an iterative method for performing vector
rotations by arbitrary angles using only shifts and additions,
as shown in Equation 1.

x(j +1) = x(j)−σ(j)2− jy(j)

y(j +1) = y(j)+σ(j)2− jx(j)

z(j +1) = z(j)−σ(j)arctan
(

2− j)
(1)

For rotation mode σ(j) = +1 if z(j) ≥ 0, otherwise is −1.
For vectoring mode, σ(j) = −1 if y(j) ≥ 0, otherwise is +1.

The CORDIC algorithm is operated in one of two modes:
rotation or vectoring. In rotation mode, the angle accumula-
tor is initialized with the desired rotation angle. The rotation
decision at each iteration is made to decrease the magnitude
of the residual angle. In vectoring mode, the CORDIC unit
rotates the input vector to align the result vector with the x
axis, such that y approaches 0.

The CORDIC algorithm scales up the operands by a fac-
tor of about 1.64676025812 [9, 10]. Compensating for this
scale factor has to be performed in order to maintain the ini-
tial vector magnitude. Finally, it is worth mentioning that in
order to prevent round-off errors from contaminating the final
result, at least log2 n additional low-order bits are necessary
in CORDIC for intermediate values [10].

3. OFDM DETECTION UNDER FAST FADING

The received signal vector, y, on the N subchannels of a
single OFDM symbol under fast fading radio channels can
be described as y = Hx+v, where x is the transmitted signal
vector, and v is a noise vector. The matrix H is determined

by the state of the radio channel during the current OFDM
symbol [1]. For the remainder of this paper, it will be as-
sumed that the channel state matrix H is known perfectly at
the receiver. Several techniques are available for channel esti-
mation based on the transmission of known pilot symbols and
filtering algorithms [1, 2].

The symbol detection task selects the vector x which is the
most likely to have produced the observed vector y given the
(estimated) H matrix. A useful approach to symbol detection
is to calculate the QR decomposition of the matrix H = QR,
where Q is a unitary matrix and R is an upper-triangular ma-
trix. Detection is then performed on y′ = QHy = Rx + QHv,
for which a sequential least squares detection method is easily
formulated. Unfortunately, a QR decompositon on the full-
size matrix H is very computationally expensive.

Recently, we proposed a detection algorithm that performs
block QR decomposition instead of a full QR decomposition
of the matrix H, followed by an iterative technique to estimate
and remove the interference between the subsets [2]. The ba-
sis of this algorithm is that, for moderate fading, the entries of
the channel transfer matrix, H, with the highest absolute val-
ues are concentrated on a band around the main diagonal [3],
as shown in Figure 1. This means that M (d ×d) matrices
placed along the main diagonal of H will contain most of the
significant values of H. The non-zero entries of H outside of
these sub-matrices are cancelled by an iterative interference
cancellation technique as described next.

...

d

d

M blocks

M

blocks

Fig. 1. Channel State Matrix Decomposition (gray regions
contain values with largest magnitudes) – adapted from [2,3].

Each block m = 1, . . . ,M, QH
m , calculated during block

QR decomposition is multiplied by the corresponding q-el-
ement subvector ym, to give an estimated x̂m through a stan-
dard least squares detection. Then, a matrix H̄ containing
only H elements outside the d ×d blocks is multiplied by the
whole N-element vector x̂ to give an updated interference vec-
tor, ȳ(i) = H̄x̂, where i is the iteration index. Then, a new it-
eration is performed on the difference measurement, y− ȳ(i).

For the same conditions assumed in previous work [3]
(QPSK modulation, signal-to-noise ratio Eb/N0 = 30dB, four
propagation paths, window length M = 11 carriers, and a nor-
malized Doppler frequency of fdT = 0.05), to obtain a com-
parable BER of 2.5 · 10−4 we need a word-length of 19 bits
with 12 fractional bits for fixed-point implementation [2]. An

additional 5 bits are necessary only for CORDIC internal val-
ues [10]. The mentioned BER was obtained with two decod-
ing iterations following the block QR decomposition. As we
show in Section 6, the comparable BER value is achieved with
much lower computing latency.

4. CORDIC IMPLEMENTATION ON FPGA

Field-Programmable Gate Arrays (FPGA) mainly consist of
Look-Up Table (LUT) based programmable logic blocks and
reconfigurable interconnections build with nMOS-tree mul-
tiplexers. Compared to Application-Specific Integrated Cir-
cuit (ASIC) designs, the speed of FPGA designs is slower
due to the significant extra delay introduced by interconnec-
tions [11]. Thus, the latency of an FPGA circuit is determined
by two factors: the delay in LUTs and the delay in the inter-
connection paths. A good understanding of the FPGA’s ar-
chitecture, the synthesis tool, and the routing and mapping
software is essential in obtaining satisfactory system speed.

To improve computation, most FPGA architectures pro-
vide dedicated resources for specific operations. For example,
addition is supported by carry chains that use a faster dedi-
cated routing rather than the general routing. This means that
addition is typically faster than LUT-based Boolean function
evaluation. State-of-the-art FPGAs, e.g., Stratix II [5], also
include a number of small-capacity Random Access Memo-
ries (RAM) to support data-intensive applications, embedded
multipliers to provide hardware support for filter implemen-
tation, and additional logic to support conditional operations
such as (X > Y) ? Z : W at no additional delay penalty.

CORDIC algorithm contains only additions and shift op-
erations. While addition is well supported in FPGA by means
of dedicated carry chains, variable shift operations are diffi-
cult to build due to the high cost of multiplexing logic [12].
For this reason, the CORDIC recursion is completely unrolled.
Since the shift operations are carried out over a known num-
ber of positions, they can be hardwired, and thus have the
delay only because of general routing.

A feature of the CORDIC algorithm is an increase of the
magnitude of the vector by a factor of 1.64676025812 [9,10].
Compensating the scale factor by a final plain multiplication
by its inverse, 0.607252935, increases the latency and reduces
the throughput of the CORDIC rotator.

To simplify the scaling operation, several schemes that ex-
pand the inverse of the scale factor into a product of elemen-
tary factors have been proposed. These schemes belong to
either of two approaches: (i) repeating some of the CORDIC
iterations to make the scale factor a power of the machine
radix [13], so that it can be cleared by a simple shift, and
(ii) accomodating addititional scaling iterations to compen-
sate the scale factor [14], or a combination of both [15–17].
For the suboptimal OFDM decoding where small matrices are
to be processed, these extra iterations should be avoided if
the CORDIC pipeline were to be kept full of data, thus run-

ning at full speed. To remove the extra iterations, CORDIC
recurrence has been modified to merge single iterations of
CORDIC and scaling into a single iteration [18]. However,
this merging scheme requires long shift operations over 10 to
16 bits, and this does not make it attractive for mapping on
FPGA, where going through long interconnections should be
avoided if the propagation time is to be kept low. Even if it-
erations of the other proposed CORDIC schemes were to be
merged to accomodate scale factor compensation, long shift
operations would still be needed.

In our approach, we still merge rotating and scaling oper-
ations, but in a way that minimizes the delay over the inter-
connection network. We propose to expand the inverse of the
scale factor into elementary factors of the form 1+σk(k)2−k,
where k is the shift length of a scaling operation, and σk(k) =
±1. Then, the rotating and scaling operations are merged ac-
cording to Equation 2.

x(j +1) = (1+σk(j)2−k)x(j)+

+σ(j)2− j(1+σk(j)2−k)y(j)

y(j +1) = (1+σk(j)2−k)y(j)−

−σ(j)2− j(1+σk(j)2−k)x(j)

(2)

In order to keep the delay over interconnections as low as
possible, shift operations over a small number of bits are pre-
ferred. Thus, small values for both k and k+ j are sought. The
expansion of the scale factor inverse presented in Equation 3
provides a precision of 20 bits with only 11 merged rotation-
scaling iterations, and with a shift over a maximum length of
12 bits per merged iteration. To the best of our knowledge,
this is superior to what has been proposed in the literature.

(1−2−2) (1−2−3) (1−2−4) (1−2−5)2

(1+2−6)2 (1+2−7)3 (1−2−8) ≈ 0.607253779 (3)

Once the values of k’s have been determined, lower val-
ues for k + j can be achieved by merging short-shift rotating
iterations with long-shift scaling iterations. For example, the
0th rotating iteration is merged with the largest-shift scaling
iteration, the 1st rotating iteration with the next largest-shift
scaling iteration, and so on.

A merged rotating-scaling iteration requires three adders
to implement the four argument addition. In Section 3, we
have determined that CORDIC-based rotation for OFDM un-
der fast fading requires a word-length of 24 bits. Since two
out of three additions of a merged iteration can be carried
out in parallel, the latency of four 24-bit argument addition
is the sum of one carry propagation time over 24 bits, the
propagation time across a LUT, clock-to-output time, and set-
up time. As mentioned, conditional operation based on the
sign of component y presented in Equation 1 is supported by
Stratix II with no additional delay [5]. Quartus II (the Altera’s
FPGA mapping tool) reports that the latency of the longest-
shift merged iteration is 3.5 ns with a variation of ± 10% de-

pending on various synthesis options. Given that the Nios II
processor can run up to 185 MHz [6], there is still a positive
slack of more than 1.5 ns that can be used to accomodate the
other sequential delays, such as setup or hold time. These
general design techniques should also be useful with other
FPGA families.

To conclude, the resulting CORDIC rotator has a unity
scale factor, and reliably fits into the Nios II pipeline. This
means that the throughput can be as high as one Givens rota-
tion per cycle. In the next section, we present the details of
a complete reconfigurable functional unit that integrates the
CORDIC rotator along with FPGA’s embedded memory.

5. CORDIC-BASED FUNCTIONAL UNIT

To avoid any additional processing per pipeline stage (e.g., se-
lection between the CORDIC vectoring and rotation modes),
and thus force the pipeline cycle time to the minimum possi-
ble, two distinct pipelines, V-CORDIC and R-CORDIC, for
the vectoring and rotation CORDIC operation modes, respec-
tively, are deployed, as presented in Figure 2. An important
decision was to store the rotation angle calculated during a
vectoring operation both into FPGA’s embedded memories
for future calculations, and as a trace along the pipeline. Since
the result of the first vectoring iteration (or of the first angle-
restore iteration) is readily available in place to drive the ro-
tation pipeline, the true-dependency between an R-CORDIC
operation and the corresponding V-CORDIC operations is re-
duced to a single clock cycle. Therefore, an R-CORDIC op-
eration can be performed back-to-back to corresponding sub-
sequent V-CORDIC operation. The benefit of this result is
that deep software pipelines [19] can be launched into execu-
tion, with a large positive impact on the computing power. It
also should be noticed that since there is no need to calculate
the unitary matrix, Q, explicitly, as we show in Section 6, the
angle can be represented directly in the arctan base [9, 10].
Therefore, the last identity of Equation 1 is not implemented.

sgn

y x

y x

>>i

It
er

at
io

n
‘i’

Vectoring CORDICAngle
Trace

Rotation CORDIC

ADDADD

+

+

y x

y x

>>i>>i >>i

+

+z

ADD ADD

Fig. 2. A CORDIC pipeline stage and the angle trace.

Four η-way SIMD custom instructions are investigated:
V CORDIC RF, R CORDIC RF, ANGLE RESTORE, and
R CORDIC FPGA, where η , the SIMD way size, is the num-
ber of data items to be processed in parallel by a single in-
struction. These instructions are defined as follows:

• V CORDIC RF performs η vectoring operations in
parallel on η groups of arguments x and y from reg-
ister file, and stores the resulting η coordinates x into
FPGA embedded memory, and the η angles, z, into
both FPGA embedded memory and mentioned traces.

• R CORDIC RF performs η rotation operations in par-
allel on η groups of arguments x and y from register
file using the η angles stored on mentioned traces, and
stores the resulting η coordinates x and y back into
FPGA embedded memory.

• ANGLE RESTORE WB loads η angles from FPGA
embedded memory into traces, or writes back to regis-
ter file values stored into FPGA embedded memory.

• R CORDIC FPGA performs η rotation operations in
parallel on η groups of arguments x and y from FPGA
embedded memory using the η angles stored on men-
tioned traces, and stores the resulting η coordinates x
and y back into FPGA embedded memory.

It is important to notice that both R CORDIC RF and
R CORDIC FPGA instructions need valid angle values
preloaded on the traces. Thus, appropriate V CORDIC RF
or ANGLE RESTORE instructions must be launched prior to
the R CORDIC RF and R CORDIC FPGA instructions. A
second important observation is that all the data to be pro-
cessed are transferred from register file into FPGA only once,
during V CORDIC RF and R CORDIC RF operations. Since
the subsequent operations ANGLE RESTORE WB and
R CORDIC FPGA use data within the FPGA only, the data
trafic between the register file and the FPGA is minimized.

With the CORDIC-based functional unit and its associ-
ated custom instructions, the parallelism of our OFDM de-
tection algorithm is exploited. The FPGA capability to im-
plement application-specific computations allows the deploy-
ment of a unity scale factor CORDIC with the throughput
of one rotation per cycle. By storing the rotation angle as a
trace, a R CORDIC operation can be launched back-to-back
to a V CORDIC operation, exploiting the intra-block paral-
lelism. In turn, this facilitates the generation of deep software
pipelines that are best executed on VLIW architectures [20].
As mentioned, the inter-block parallelism of our algorithm [2]
is exploited by the use of SIMD operations.

The computing scenario is as follows. Each subdiago-
nal element of the channel state matrices, Hm, is forced to
zero by a complex Givens rotation described in terms of three
real Givens rotations [8]. There is no need to calculate the
global unitary matrices, Qm, explicitly. Instead, this matrix
will be represented implicitly by a set rotation angles that are
stored into FPGA embedded memory. These angles are read-
ily available on FPGA for interference cancellation.

6. NUMERICAL RESULTS

As mentioned, a Nios II processor [6] and a CORDIC-based
reconfigurable functional unit are deployed on a Stratix II
FPGA [5]. Nios II is a 32-bit general-purpose processor sup-
porting custom instructions in reconfigurable hardware. To
accomodate the large amount of data to be processed, we use
a Very Long Instruction Word (VLIW) version of Nios II [21].
In a VLIW processor, load/store instructions can be issued in
parallel with arithmetic or logic operations. Thus, the data
traffic between memory and register file is carried out in par-
allel with useful computation, and thus it contributes only a
little to the total cycle count.

The QR decomposition has a computational cost of
O

(

N3
)

[8], which means that for block processing the com-
putational cost is O

(

Md3
)

= O
(N

d d3
)

= O
(

Nd2
)

. Our ap-
proach allows parallel processing of all M blocks; thus, the
computational latency decreases to O

(

d3
)

. The interference
calculation is essentially a matrix multiplication; thus it has a
computational cost O

(

N2
)

, but it can also be parallelized.
Assuming N = 256 and d = 16, there are M = 16 (16×

16) blocks in a 256 × 256 channel state matrix. To calcu-
late the upper-triangular matrix of a block, Rm, where m =
1, . . . ,16, a number of 1360 complex Givens rotations (3×
1360 real Givens rotations) are needed. The unitary matrix
of a block, Qm, is the product of 120 elementary unitary ma-
trices, and does not have to be generated explicitly. The 120
rotations are applied directly on the d-element subvector ym
and to all subsequent d-element subvectors ym − ŷm(i). In
Section 3, we determined that I = 2 iterations are needed for
a good BER. For a rate of 2000 OFDM symbols per second,
the instruction count per second to perform OFDM detection
is 3× (1360+120I)×16×2000 ≈ 154 ·106. For the OFDM
frame symbol lengths of N = 512 and N = 1024, the instruc-
tion counts per second are 308 ·106 and 616 ·106, respectively.

For the assumed four propagation paths, the path gains
and their first-order derivatives are estimated. This is per-
formed by measuring eight pilot symbols per frame, followed
by inverting the resulting 8× 8 system matrix. This requires
2 · 106 instructions per second to carry out the matrix inver-
sion by a QR decomposition [22]. We assume an overhead
of 2 · 106 instructions per second to accomodate the trashing
routines. Therefore, the total instruction counts per second
for 256-OFDM, 512-OFDM, and 1024-OFDM demodulation
tasks are 158 ·106, 312 ·106, and 620 ·106, respectively.

Since each block can be decomposed independently, the
OFDM detection process exhibits also inter-block parallelism.
Therefore, the utilization of Single-Instruction Multiple Data
(SIMD) instructions [7] is enabled. Assuming a 4-way SIMD
for 1024-OFDM, and a 2-way SIMD for 512-OFDM, the in-
struction count per second for OFDM demodulation reduces
to 158 ·106 in both cases. Since the Nios II/f processor runs at
185 MHz, the OFDM demodulation under fast fading can be
performed in real time for 256, 512, and 1024 symbol lengths.

7. CONCLUSIONS

We have shown that the synergism of inter-block parallelism,
intra-block parallelism, and reconfigurable hardware capabil-
ity to implement application-specific computations, allows the
OFDM detection under fast fading radio channels to be per-
formed in real time on reconfigurable hardware. Although
the computational complexity of our detection algorithm is al-
ready available from previously known detection algorithms,
its inherent inter-block and intra-block parallelism implies that
low latency implementations can be created, that the sequen-
tial nature of the prior algorithms do not allow.

8. REFERENCES

[1] Y.-S. Choi, P. Voltz, and F. Cassara, “On Channel Es-
timation and Detection for Multicarrier Signals in Fast
and Selective Rayleigh Fading Channels,” IEEE Trans.
Commun., vol. 49, no. 8, pp. 1375–1387, Aug. 2001.

[2] M. McGuire and M. Sima, “Block-wise Parallel De-
tection for OFDM with Fast Fading,” in Proc. 15th
IEEE Int’l Conf. Digital Signal Processing (DSP 2007),
Cardiff, Wales, U.K., July 2007, accepted.

[3] X. Cai and G.B. Giannakis, “Bounding performance and
suppressing intercarrier interference in wireless mobile
OFDM,” IEEE Trans. Commun., vol. 51, no. 12, pp.
2047–2056, Dec. 2003.

[4] M. Dillinger, K. Madani, and N. Alonistioti, Eds., Soft-
ware Defined Radio: Architectures, Systems and Func-
tions, John Wiley & Sons, July 2003.

[5] Altera Corporation, Inc., Stratix II Device Handbook,
San Jose, California, Aug. 2006.

[6] Altera Corporation, Inc., Nios II Processor Reference
Handbook, San Jose, California, May 2006.

[7] D.A. Patterson and J.L. Hennessy, Computer Architec-
ture. A Quantitative Approach, Morgan Kaufmann, sec-
ond edition, 1996.

[8] G.H. Golub and C.F. van Loan, Matrix Computations,
The Johns Hopkins University Press, 3rd edition, 1996.

[9] J.E. Volder, “The CORDIC trigonometric computing
technique,” IRE Trans. Electronic Computers, vol. EC-
8, no. 3, pp. 330–334, Sept. 1959.

[10] J.S. Walther, “A unified algorithm for elementary func-
tions,” in Proc. Spring Joint Computer Conf. the Am.
Federation of Information Processing Soc. (AFIPS), Ar-
lington, Virginia, 1971, vol. 38, pp. 379–385.

[11] S. Brown, M. Khellah, and Z. Vranesić, “Minimizing
FPGA Interconnect Delays,” IEEE Design & Design of
Computers, vol. 13, no. 4, 1996.

[12] P. Metzgen, “A High Performance 32-bit ALU for Pro-
grammable Logic,” in 12th ACM/SIGDA Int’l Symp.
Field Programmable Gate Arrays (FPGA 2004), Mon-
terey, California, Feb. 2004, pp. 61–70.

[13] H.M. Ahmed, J.-M. Delosme, and M. Morf, “Highly
Concurrent Computing Structures for Matrix Arithmetic
and Signal Processing,” IEEE Computer, vol. 15, no. 1,
pp. 65–82, Jan. 1982.

[14] G.L. Haviland and Al A. Tuszynski, “A CORDIC Arith-
metic Processor Chip,” IEEE Tran. Comput., vol. C-29,
no. 2, pp. 68–79, Feb. 1980.

[15] J.-M. Delosme, “VLSI Implementation of Rotations in
Pseudo-Euclidian Spaces,” in Proc. IEEE Int’l Conf.
Acoust., Speech, and Signal Process. (ICASSP 1983),
Boston, Massachusetts, Apr. 1983, vol. 8, pp. 927–930.

[16] J.R. Cavallaro and F.T. Luk, “CORDIC Arithmetic for
an SVD Processor,” J. Parallel and Distrib. Computing,
vol. 5, no. 3, pp. 271–290, June 1988.

[17] B. Yang and J. Böhme, “Reducing the Computations of
the SVD Array given by Brent and Luk,” in Advanced
Algorithms and Architectures, vol. 1152 of Int’l SPIE
Proc., San Diego, California, Aug. 1989, pp. 92–102.

[18] A.A.J. de Lange, A.J. van der Hoeven, E.F. Deprettere,
and J. Bu, “An optimal floating-point pipeline CMOS
CORDIC processor,” in Proc. IEEE Int’l Symp. Cir-
cuits and Systems (ISCAS 1988), Helsinki, Finland, June
1988, vol. 3, pp. 2043–2047.

[19] V.H. Allan, R.B. Jones, R.M. Lee, and S.J. Allan, “Soft-
ware Pipelining,” ACM Computing Surveys (CSUR),
vol. 27, no. 3, pp. 367–432, Sept. 1995.

[20] M. Lam, “Software pipelining: an effective scheduling
technique for VLIW machines,” in Proc. CM SIGPLAN
1988 Conf. Programming Language Design and Imple-
mentation (PLDI ’88), New York, NY, U.S.A., June
1988, pp. 318–328.

[21] A.K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Fos-
ter, “An FPGA-based VLIW Processor with Custom
Hardware Execution,” in Proc. ACM/SIGDA 13th Int’l
Symp. Field-Programmable Gate Arrays (FPGA ’05),
Monterey, California, Feb. 2005, pp. 107–117.

[22] M. Sima and M. McGuire, “CORDIC Scenario for
Kalman-Based Channel Estimation,” in Proc. 10th IEEE
Pacific Rim Conference on Communications, Computers
and Signal Processing (PacRim 2005), Victoria, B.C.,
Canada., Aug. 2005, pp. 165-168

