
Software Solutions for Converting a MIMO-OFDM Channel into Multiple
SISO-OFDM Channels

M. Sima∗, M. Senthilvelan§, D. Iancu†, J. Glossner†, M. Moudgill†, and M. Schulte§
∗University of Victoria, Department of Electrical and Computer Engineering

PO Box 3055 Stn CSC, Victoria, BC V8W 3P6, Canada
Email: msima@ece.uvic.ca

†Sandbridge Technologies, Inc., 1 North Lexington Avenue, White Plains, NY 10601, U.S.A.
e-mail: {DIancu,JGlossner,MMoudgill}@sandbridgetech.com

§University of Wisconsin-Madison, Department of Electrical and Computer Engineering
1415 Engineering Drive, Madison, WI 53706, U.S.A.
e-mail: senthilv@cae.wisc.edu, schulte@engr.wisc.edu

Abstract

We present a software approach for MIMO-OFDM
wireless communication technology. We first show
that complex matrix operations like Singular-Value
Decomposition (SVD), diagonalization, triangulariza-
tion, etc., can be executed efficiently in software us-
ing a combination of CORDIC and unitary rotation
algorithms in a multithreaded SIMD processor. We
then investigate and analyze the transformation of
a MIMO-OFDM channel into multiple independent
SISO-OFDM channels by means of the SVD. The
algorithms are implemented on the Sandblaster proces-
sor. The numerical results indicate that the CORDIC-
augmented processor provides a significant reduction
in the computing time of more than 47% over the
standard Sandblaster processor when converting a 4-
by-4 MIMO-OFDM channel into four SISO-OFDM
channels. The technique is applicable to emerging
wireless communication protocols, such as WiMAX and
Wi-Fi, and provides the flexibility required to adapt to
continually changing and evolving standards without
the need for expensive hardware redesigns and respins.

1. Introduction

High data-rate wireless access is demanded by many
applications. Since most of the available frequency
bands have already been allocated to specific services,
it is often impractical or very expensive to increase
bandwidth to accomodate higher data-rates. Multiple-
Input Multiple-Output (MIMO) systems using multiple

transmit and receive antennae is an alternative solu-
tion [1]. In particular, Orthogonal Frequency Division
Multiplexing (OFDM) [2] can be used in conjunction
with MIMO; a MIMO-OFDM system can significantly
improve the throughput of wireless communication
systems [3] at no additional bandwidth expenditure.

A main obstacle in implementing MIMO-OFDM is
the very high computational requirements. For this rea-
son, software implementation within the terminal sta-
tions is very difficult to achieve; only custom hardware
solutions having been proposed so far [4]. In this paper,
we address the complex matrix operations specific to
software implementations of MIMO-OFDM. In partic-
ular, we consider the QR decomposition as a primi-
tive task in Singular-Value Decomposition (SVD) and
eigenvalue decomposition, and show that the Givens
rotation method is the most appropriate technique to
perform QR decomposition on Sandbridge architec-
tures [5], [6]. Since the Givens rotation is computation-
ally demanding and extensively used in many complex
matrix operations, it is given architectural support
through CORDIC functional units and associated in-
structions. Our simulations, performed on the Sand-
bridge Software-Defined Radio (SDR) development
platform, indicate that a CORDIC-augmented Sand-
blaster processor provides a reduction in the computing
time of more than 47% over the standard Sandblaster
processor when decomposing a 4-by-4 MIMO-OFDM
channel into four independent SISO-OFDM channels.
In terms of arithmetic precision, the CORDIC-based
approach is also superior to the standard approach with
more than 0.3% when calculating the singular value
matrix, and more than 5% for when calculating left and

right unitary matrices in 16-bit fixed-point arithmetic.
Since Sandblaster is a SIMD-VLIW processor with a
powerful DSP instruction set, such an improvement
within its target application domain indicates that a
CORDIC-augmented Sandblaster processor is promis-
ing in implementing MIMO-OFDM systems.

To summarize, since no effective pure-software so-
lutions to implement MIMO-OFDM appear in the
literature, we propose and evaluate a CORDIC-based
approach that allows complex matrix operations, such
as QR decomposition, eigenvalue decomposition, and
SVD to be executed efficiently in software on a multi-
threaded Single-Instruction Multiple-Data (SIMD) pro-
cessor. Specifically, the paper’s contributions include:

• Demonstrating that the Givens rotation method is
an efficient technique for performing QR decom-
position, eigenvalue decomposition, and SVD in
software on the Sandblaster processor.

• Providing techniques to incorporate CORDIC
functional units into the standard Sandblaster ar-
chitecture. Specifically, full-CORDIC and semi-
CORDIC operations are defined.

• Estimating the computational effort to perform
complex matrix operations including QR decom-
position, and SVD in terms of full-CORDIC and
semi-CORDIC primitives.

• Estimating the performance of the CORDIC-
augmented Sandblaster processor for converting
a MIMO-OFDM channel into multiple SISO-
OFDM channels.

The remainder of this paper is as follows: Sec-
tion 2 describes the theoretical background of MIMO
communication systems, complex matrix computation
algorithms, and complex Givens rotations. Section 3
gives a brief overview of the Sandblaster processor.
Section 4 shows that the Givens rotation is the most
appropriate technique to perform QR decomposition
on Sandbridge architectures. Section 5 describes our
CORDIC architectural extensions. Section 6 discusses
transforming a MIMO-OFDM channel to multiple
SISO-OFDM channels in software and compares the
performance of a standard Sandblaster processor and a
CORDIC-augmented Sandblaster processor when per-
forming this task. Section 7 presents our conclusions.

2. Background

To make the presentation self-contained, we address
some issues related to matrix computation algorithms
for MIMO communications. We also present the most
important aspects of complex Givens rotations and the
CORDIC algorithm.

2.1. MIMO communication systems

A multiple antenna communication system contains
M transmitting and N receiving antennae. Each re-
ceiving antenna receives information from each of the
transmitting antennae. Thus, there are M × N signal
paths from transmitter to receiver.

Assume that H denotes the channel matrix. Then,
the element hij is a complex number that models the
fading gain between the ith transmit and j th receive
antennae. The channel matrix is estimated through a
training process. A pseudo-random sequence is as-
signed to each transmitting antenna. Then, each of the
receiving antenna is able to separate the incoming sig-
nals through a correlative analysis. We assume that the
transmitted signal is OFDM. Therefore, a certain num-
ber of carriers are pilots. Each pilot carries known com-
plex information in a specified constellation. During
propagation, the channel adds distortion to the carriers.
We assume that the frequency spacing between the
carriers is small enough to ensure flat frequency fading
for each carrier on the per carrier allocated bandwidth.
Thus, the communication channel parameters specific
to one of the pilots from a specific antenna can be
estimated through a complex division [2].

Assuming the transmitted signal vector is X, and
the noise vector is N, the received signal vector Y is:

Y = HX + N (1)

By means of an SVD, a MIMO channel can be
transformed into multiple independent SISO channels.
Assume the channel matrix, H, has the singular value
decomposition H = USVH , where S is an upper-
diagonal matrix of singular values of H, and U and
VH are unitary matrices of singular vectors. If the
transmitted signal is multiplied by V, and the received
signal is multiplied by UH , then

Ỹ = SX̃ + Ñ (2)

where Ỹ = UHY, X̃ = VX, Ñ = UHN.
Equation 2 describes an equivalent model for multi-

ple independent SISO channels. Once the channel ma-
trix, H, is estimated, its singular-value decomposition
is calculated. Then, the matrix V is sent back to the
transmitter, which in turn predistorts the signal. The
received OFDM signals are now independent and can
be decoded in parallel on multiprocessor systems, such
as the Sandbridge SDR Platform [5], [6].

Consequently, it is imperative to perform SVD of
complex matrices efficiently. The QR decomposition,
which is a key step in solving these decompositions

and many other linear algebra problems in real-time,
is briefly presented in the next subsection.

2.2. Complex matrix computation algorithms

The QR decomposition of a matrix A ∈ C
m×n is:

A = Q

(
R

0

)
(3)

where the matrix Q ∈ C
m×m is unitary, the matrix

R ∈ C
n×n is upper triangular, and 0 is an (m − n)-

by-n all-zero matrix. If the matrix A is non-singular
(that is, square and has full rank), then the diagonal
elements of R can be choosen real and positive. In
this event, the factors Q and R are both unique [7]. If
the matrix A is singular or is not square (for example,
m > n), then the factorization is not unique (some of
the columns of Q are arbitrarily introduced).

Many techniques in linear algebra rely on the
QR decomposition. For example, the QR factorization
provides an iterative procedure for approximating the
eigenvalues of a diagonalizable non-symmetric matrix
[8], [9]. Also, the QR algorithm is at the core of a
two-sided Jacobi method for calculation the SVD of a
square complex matrix [10], [11]. Equally important,
once the triangular form R has been obtained, its diag-
onal elements can be chosen real [7]. Then, the SVD
can also be performed starting from this triangular
matrix with real diagonal elements [12].

QR decomposition is computationally expensive,
requiring O(n3) operations on general n by n ma-
trices [7], [13]. To perform triangularization in a time-
efficient manner, systolic arrays have been proposed;
see for example [14]. This approach fails the pro-
grammability requirement and consequently it is not
discussed any longer. Instead, our goal is to perform
triangularization using SIMD instructions on a multi-
threaded processor. In this paper, three potential meth-
ods to perform the QR decomposition are considered
for software implementation on the Sandblaster proces-
sor: the Gram-Schmidt orthogonalization, Householder
reflection, and Givens rotation methods. Since the last
method is of particular importance for our study, we
describe it in the next subsection.

2.3. The Complex Givens Rotation

Assume two complex numbers a = are +j aim, and
b = bre + j bim. Then, a complex Givens rotation can
be described in terms of two rotation angles [15]:

(
cos θ1 sin θ1e

j θ2

−e− j θ2 sin θ1 cos θ1

)(
a

b

)
=

(
r

0

)
(4)

where the complex number r = rre+j rim. The rotation
matrix can be decomposed into:

(
ej αa 0

0 ej αb

) (
cos θ1 sin θ1

− sin θ1 cos θ1

)(
e− j αa 0

0 e− j αb

)

(5)
It is apparent that θ2 = αa − αb. If θ2 = 0, then the
transformation describes a real Givens rotation:

(
cos θ1 sin θ1

− sin θ1 cos θ1

) (
a

b

)
=

(
r

0

)
(6)

where a, b, and r are real numbers.
In connection with Equation 5, it should be noted

that the last rotation by the angle αb is in fact no ro-
tation, since ej αb is multiplied by zero. Consequently,
the complex Givens rotation can also be described in
terms of four angles −αa, −αb, θ1, and αa. Also, if the
last rotation by the angle αa is no longer performed,
then the resulting vector has real components:

(
cos θ1 sin θ1

− sin θ1 cos θ1

) (
e− j αa 0

0 e− j αb

) (
a

b

)
=

(
ρ

0

)

(7)
where the Polar representations for the complex num-
bers a and b are a = ρaej αa , and b = ρbe

j αb ,
respectively. It is apparent that ρ =

√
ρ2

a + ρ2
b , and

as such r = ρej αa .
The Givens rotation is computationally demanding.

For example, the direct evaluation of the real rotation
shown in Equation 6 requires four multiplications,
two additions, and a large memory for the cosine
and sine tables. Also, finding the angle θ1 translates
to a sequence of multiplications, additions, and ta-
ble lookup operations if Taylor series expansion is
employed. While a desktop computer may support
these operations, implementing Givens rotations on an
embedded platform for wireless applications can be
problematic. Thus, new solutions are needed.

COordinate Rotation DIgital Computer
(CORDIC) [16], [17] is an iterative method for
performing vector rotations, e.g., Givens rotations,
by arbitrary angles using only shifts and additions,
as shown in Equation 8. The CORDIC algorithm
is performed in one of two modes: rotation or
vectoring. In rotation mode, the angle accumulator,
z, is initialized with the desired rotation angle. The
rotation decision at each iteration is made to decrease
the residual angle magnitude. In vectoring mode,
the CORDIC unit rotates the input vector to align
the resulting vector with the x axis, such that y

approaches 0. The result of the vectoring operation is
a rotation angle, z, and the scaled magnitude of the
original vector (the x component of the result).





x[j + 1] = x[j] − σ[j]2−jy[j]

y[j + 1] = y[j] + σ[j]2−jx[j]

z[j + 1] = z[j] − σ[j] arctan
(
2−j

)

j = j + 1

(8)

where for rotation mode σ[j] = +1 if z[j] ≥ 0,
otherwise is −1, and for vectoring mode σ[j] = −1 if
y[j] ≥ 0, otherwise is +1.

The CORDIC algorithm produces one bit of accu-
racy each iteration [17]. Thus, the accuracy can be
adjusted at run time. It is well-known that for CORDIC
algorithms, only log2(n) additional low-order bits are
necessary for intermediate values to prevent round-off
errors from corrupting the final result [17]. Assume
the typical 16-bit precision in OFDM demodulation.
Then, the CORDIC algorithm reads in three 16-bit
arguments, performs intermediate computations with
20 bits of precision per result, and produces two 16-
bit final results. Assuming a 5-bit representation for
the iteration counter, j, 20× 3 + 5 = 65 bits are to be
updated during each CORDIC iteration.

3. Overview of the Sandbridge processor

Sandbridge Tech. has designed a multithreaded pro-
cessor capable of executing digital-signal processing or
SIMD-vector processing, embedded control, and Java
code in a single compound instruction set optimized
for handset radio applications [5], [6]. The SB3011
has four Sandblaster processor cores, where each core
supports eight concurrent threads. The threads simulta-
neously execute instructions, but only one thread may
issue an instruction on a cycle boundary. Since each
thread writes back its results to the register files before
the next instruction from the same thread issues, true
data dependencies are eliminated.

The Sandblaster processor is partitioned into three
units: (1) an instruction fetch and branch unit, (2) an
integer and load/store unit, and (3) a SIMD-style
Vector Processing Unit (VPU). Parallel operations are
performed in each of these units through the use of
powerful compound instructions. The VPU includes
four Vector Processing Elements (VPEs), which per-
form arithmetic and logic operations in SIMD fashion
on 16-bit, 32-bit, and 40-bit fixed-point data types.
High-speed 64-bit data busses allow each VPE to load
or store 16 bits of data each cycle in SIMD fashion.

Each SIMD vector instruction has a latency of
one thread cycle, which corresponds to eight pipeline
stages. Four out of these eight stages are execution
stages. This is a fixed-time budget and each new
instruction to be implemented must comply with it.

4. QR decomposition of complex matrices

On general-purpose machines, where only standard
operations are supported in hardware, the Givens rota-
tion method is more computationally intensive than ei-
ther the Gram-Schmidt orthogonalization or the House-
holder reflection methods [13]. However, when certain
computing primitives are implemented in hardware, the
computational complexity of different decomposition
methods changes. For example, when the CORDIC
algorithm is implemented using dedicated functional
units and instructions, a vector rotation is performed
in roughly the same amount of time as a bit-serial
multiplication. Hence, when hardware and instructions
for the CORDIC algorithm are provided, the Givens
rotation method becomes an attractive alternative.

The most popular methods to perform QR decom-
position are Gram-Schmidt orthogonalization, Givens
rotations, and Householder reflections. We analyze
these methods to determine their appropriateness for
software implementation on the Sandblaster processor.

4.1. Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization constructs the
columns q1,q2, . . . ,qm of the unitary matrix Q, and
the entries rij of the triangular matrix R by succesive
orthogonalization of columns a1,a2, . . . ,an of the
input matrix, A. This is an iterative process, where
at each step, a vector qj ∈ 〈a1, . . . ,aj〉 that is
orthonormal to q1, . . . ,qj−1 is found.

Gram-Schmidt orthogonalization may produce vec-
tors (i.e., columns of matrix Q) that are far from
orthogonal when matrix A is close to rank-deficient
[7]. Gram-Schmidt orthogonalization also relies on
division, which the Sandblaster processor does not
support in its standard instruction set. Division is typ-
ically not supported in DSP processors due to its long
latency and infrequent occurrence in DSP applications.
Although division can be performed with CORDIC
operating in the linear mode [17], a divide precision of
only 16 bits instead of 32 bits can be achieved for by
CORDIC on the Sandblaster processor. In conclusion,
Gram-Schmidt orthogonalization is not very appealing
for the Sandblaster processor.

Givens rotations and Householder reflections are nu-
merically stable algorithms for calculating the QR de-
composition [18]. They both provide ways to compute
unitary matrices that can introduce zeros into the
vectors they multiply.

4.2. Givens rotations

When Givens rotations are used to reduce a matrix
to triangular form [18], the rotation angles are chosen
to annihilate the subdiagonal elements one-by-one. The
rotations are chosen in a particular order, such that an
element reduced to zero by a rotation never becomes
non-zero in a later rotation. The precise ordering of ro-
tations is as follows. Starting with the first column, the
elements in positions (2, 1) to (n, 1) are annihilated.
Then, in the second column elements in positions (3, 2)
to (n, 2) are annihilated, and so on. It may be readily
verified that a zero introduced by one transformation
is not affected by subsequent transformations.

4.3. Householder reflections

With the Householder reflections method, a succes-
sion of elementary unitary matrices, Qk, is applied to
the left of A such that the resulting matrix R is upper-
triangular. The computation is performed as:

R = Qn . . .Q2Q1︸ ︷︷ ︸
Q∗

A (9)

Since the product Q = Q∗

1Q
∗

2 . . .Q∗

n is also unitary,
the product QR is a QR factorization of matrix A.
Householder [7], [18] has proposed a way to compute
the unitary matries Qk so that at each step k, all the
elements of the k-th column, x, that are below the
main diagonal are zeroed by multiplication to the left
by matrix Qk, such that:

Qkx = ‖x‖e1 (10)

where e1 is a canonical unit vector. Then, the reflector
Qk, which is a unitary matrix of full rank, is:

Qk = I − 2
vv∗

v∗v
(11)

where v = ‖x‖e1 − x, as mentioned in [7].
The computational effort in the Householder method

is lower than in the Givens rotations method, while
both methods are numerically stable. Therefore, the
Householder method is often preferred on general-
purpose computing platforms. However, on the Sand-
blaster processor that features SIMD, VLIW, and
multi-threading capabilities, there are many issues that
make the Givens rotation method a better choice.
Generally speaking, programs that exhibit a high level
of parallelism and symmetry of computation benefit
more from a parallel architecture like Sandblaster. With
the Householder method, the size of the reflector Qk is

decremented each iteration, and this dynamic change is
not well-suited for implementation on the Sandblaster
processor or other highly parallel DSP processors. On
the other hand, the Givens rotation method exhibits a
regular computation pattern. For example, the Givens
rotation method introduces only a single zero per
matrix multiplication. The Givens rotation method also
benefits from direct hardware support in the CORDIC-
extended Sandblaster processor. Therefore, in the fol-
lowing sections, we investigate the use of the Givens
rotation method to perform complex matrix operations.

5. CORDIC architectural extension

According to Equation 8, CORDIC is a four-element
function. The coordinate, y, in vectoring mode, or
angle, z, in rotation mode are a priori known to go
to zero. The iteration counter, j, is incremented by
one each cycle and its final value is known. Conse-
quently, there is no need to write y or z and j back
to the register file if all the CORDIC iterations are
performed by a single instruction. However, if not
all the CORDIC iterations are performed by a single
instruction, then the coordinate y or angle z, and the
iteration counter, j, must be saved between successive
CORDIC instructions. In this case, each iteration of the
CORDIC algorithm has four inputs and four outputs;
x, y, z, and j.

Since instructions in current RISC and DSP architec-
tures typically have two input operands and one output
operand, defining a suitable CORDIC instruction is not
a straightforward task. Even the attempt to pack the
four output values, x, y, z, and j, into a single wide
register fails on the Sandblaster processor, since 65
bits are required to implement 16-bit rotations with
CORDIC, while the Sandblaster Processor has only
40-bit registers.

A solution for incorporating CORDIC instructions
into the Sandblaster architecture is to augment the
register file with an auxiliary register that is implicitly
accessed when the CORDIC instructions are executed.
Specifically, the CORDIC instruction

CORDIC Rs1, Rs2, Rt

uses the auxiliary register Raux as both a source reg-
ister and a destination register. With this approach, the
input arguments are read in from the source registers
Rs1 (and possibly from Rs2 if additional configuration
information is needed), and Raux, and the results are
written back to Rt and Raux.

To preserve the existing connectivity of functional
units to the register file, the auxiliary register should
be a part of the CORDIC functional unit instead of

the vector register file. To upload data to the auxiliary
register, an additional instruction is needed. Such an
instruction can be, for example, Configure CORDIC,
CFG CORDIC. Since either the coordinate y or the
angle, z, and the iteration counter, j, have known final
values there is no need to move information from the
auxiliary register back to the register file when the
last CORDIC iteration completes. Subsequently, this
approach is referred to as the full-CORDIC approach.

To eliminate the overhead for deploying auxiliary
registers, the CORDIC operation may be split into two
semi-operations. The first semi-operation updates the
operand pair (x, y), while the second semi-operation
updates the operand pair (z, j). This approach is re-
ferred to as the semi-CORDIC approach. The dis-
advantage of the semi-CORDIC approach is that two
operations are executed to implement a full-CORDIC
operation. However, the semi-CORDIC operations map
well to the existing instruction format, do not require
auxiliary registers, and hence have less hardware over-
head than the full-CORDIC operations.

With the full-CORDIC approach, three instruc-
tions are investigated: CFG CORDIC, ROT CORDIC,
VEC CORDIC. With the semi-CORDIC approach,
four instructions are investigated: XY ROT CORDIC,
ZJ ROT CORDIC, XY VEC CORDIC, ZJ VEC CORDIC.
For the rotation mode, the semi-operations must be
issued in the order XY ROT CORDIC, ZJ ROT CORDIC.
For the vectoring mode, the semi-operations must be
issued in the order ZJ VEC CORDIC, XY VEC CORDIC.
The constant M denotes the number of CORDIC
iterations executed per CORDIC instruction.

In the Sandblaster architecture, each instruction has
a latency of one thread cycle, which corresponds to
eight clock cycles. Since the latency can be at most one
thread cycle, and each thread cycle has four execution
stages, one implementation goal is to fit as many
CORDIC iterations as possible into the four execution
stages. This issue, which gives the maximum value for
M , is analyzed in the next subsection.

5.1. CORDIC functional unit implementation

In this subsection, only the semi-CORDIC approach
is considered, since a full-CORDIC functional unit is
a straightforward implementation of Equation 8.

The semi-CORDIC functional unit operating in the
circular rotation mode is shown in Figure 1. In this
figure only the hardware corresponding to a single
CORDIC iteration is shown. However, M instances
of that circuit can be deployed, which allows M

CORDIC iterations to be performed using a pair of
semi-CORDIC instructions.

The semi-CORDIC instructions for rotation
mode are to be executed sequentially; first
XY ROT CORDIC and then ZJ ROT CORDIC.
Although both semi-circuits work in parallel, only
the operand pair (x, y) or (z, j), corresponding to the
specific semi-instruction being executed, is updated.

>> j >> j
bordersemi−circuit

sgn(z(j))

operand−pair selection (xy/zj)

REGISTER WA REGISTER WB
x(j) y(j) jz(j)

additional (M−1) circuit instances

j+1

1

z(j+1)y(j+1)x(j+1)

j

LUT

ALU

j

ALUALU

x(j+M) OR z(j+M) y(j+M) OR j+M

MUX 4:2

REGISTER WT

sgn

Figure 1. Semi-CORDIC unit for rotation mode

The semi-CORDIC functional unit operating in the
circular vectoring mode is shown in Figure 2. Similar
to the rotation case, only the hardware corresponding
to a single CORDIC iteration is shown. However, M

instances of that circuit can be deployed, which allows
M CORDIC iterations to be performed using a pair of
semi-CORDIC instructions.

j

ALUALU

>> j>> j

ALU

x(j+M) OR z(j+M)

−M0

MUX 2:1

operand−pair
selection (xy/zj)

y(j+M) OR j+M

MUX 4:2

REGISTER WT

sgn(y(j))

semi−circuitborder

j=j−K

REGISTER WA REGISTER WB
x(j) y(j) jz(j)

additional (M−1) circuit instances

j+1

1

z(j+1)y(j+1)x(j+1)

LUTK

K

sgn

Figure 2. Semi-CORDIC for vectoring mode

The semi-CORDIC instructions for vectoring are to
be executed sequentially; first ZJ VEC CORDIC and
then XY VEC CORDIC. Although both semi-circuits
work in parallel and only the operand pair (z, j) or
(x, y), corresponding to the specific semi-instruction
being executed, is updated. However, since the iteration
counter, j, is incremented before the shift operations
associated with the operand pair (x, y) are carried
out, the iteration counter is decremented by K = M

Table 1. Performance figures for routines used in 4-by-4 MIMO-OFDM assuming an SVD with six sweeps.

Routine Standard Sandblaster full-CORDIC-augmented Sandblaster semi-CORDIC-augmented Sandblaster
thread cycles thread cycles # CORDIC instructions thread cycles # CORDIC instructions

QR decomposition 243,963 116,597 1,381 118,388 1,978
SVD 3,106,339 1,594,825 16,572 1,616,317 23,736

MIMO-to-SISO 3,120,161 1,608,695 16,636 1,630,251 23,864

during the XY VEC CORDIC instruction. During the
ZJ VEC CORDIC instruction, the iteration counter, j,
is sent to the left semi-circuit unchanged (i.e., K = 0).

The proposed CORDIC instructions are vector in-
structions that go through eight pipeline stages, in-
cluding four stages for execution. A single CORDIC
iteration includes a sign detection, a shift operation,
and an addition on the critical path. A conservative
approach that leads to fairly inexpensive hardware is to
implement four CORDIC iterations in the four pipeline
stages [19], [20]. Therefore, we assume that M = 4
for the subsequent experiments. Thus, it takes four
full-CORDIC or eight semi-CORDIC instructions to
perform a real rotation with 16-bit precision. If all four
vector processing elements have CORDIC functional
units, four CORDIC operations can proceed in parallel.

6. MIMO-OFDM to multiple SISO-OFDM
conversion in software

To perform MIMO-OFDM to SISO-OFDM conver-
sion, the SVD of the channel matrix, H, is calculated
in fixed-point arithmetic. In this process, the CORDIC
instructions are extensively utilized to perform Givens
rotations. The CORDIC scale factor is eliminated by
multiplying by a constant. The computational scenario
at the receiver side is based on the two-sided Jacobi
method [10], [11], and includes the following steps:

1) Perform QR decomposition on the input matrix
using a complex Givens rotation for each subdi-
agonal element. This yields the matrices Q and
R. The unitary matrix, Q, is used in building the
left unitary matrix U.

2) Transpose the upper-triangular matrix, R, and
perform the QR decomposition on the resulting
matrix, RT. This yields the matrices Q′ and R′.
The unitary matrix, Q′, is used in building the
right unitary matrix V.

3) Transpose the upper-triangular matrix, R′, and
reiterate Steps 1 and 2 for multiple sweeps using
the matrix R′T as input until a diagonal matrix
is reached.

4) With the unitary matrices Q and Q′, build the
left and right unitary matrices, U and V, re-
spectively, with CORDIC unit operating in the

circular rotation mode.
5) Multiply the decoded signal by VH and divide

each entry by the corresponding singular value.
The divisions are implemented by CORDIC op-
erating in linear mode.

The simulations have been carried out on the
Sandbridge Technologies SDR development platform
using the SB3011 digital-signal processor. A 256-
carrier OFDM communication system is considered,
with 192 BPSK modulated active carriers. The symbol
duration is 40 microseconds, and 50 symbols are
grouped in 2 msec frames. The first two symbols
are preambles and carry the pseudo noise training
information. The remaining 48 symbols carry the user
data. The channel correction algorithms are executed
once every 10 msec to support urban mobility. The
performance analysis has been carried out assuming a
4-by-4 MIMO configuration, which is consistent with
existing communication systems. The performance fig-
ures needed to perform QR decomposition, SVD, and
MIMO-to-SISO conversion are presented in Table 1.

For all the considered routines, it is apparent
that both the full-CORDIC-augmented Sandblaster
and the semi-CORDIC-augmented Sandblaster pro-
vide a significant speed-up over standard Sand-
blaster. For example, to complete SVD using six
sweeps, the number of thread cycles (or instruc-
tions) on a full-CORDIC-augmented Sandblaster and
a semi-CORDIC-augmented Sandblaster were deter-
mined to be 1,594,825 and 1,616,317, respectively.
Since 3,106,339 thread cycles are needed to complete
SVD on the standard Sandblaster using multiplications,
divisions, standard Taylor serier expansions, and table
look-up operations, the CORDIC solution provides a
reduction in the computing time of more than 47% for
both the full-CORDIC and semi-CORDIC approaches.
This means that the cheaper semi-CORDIC approach
is indeed a very good choice. The same improvement
figures also apply for the MIMO-to-SISO conversion.

In terms of arithmetic precision, the CORDIC-based
approach is also superior to the standard approach.
The relative errors against an ideal floating-point im-
plementation assuming that a six-sweep SVD is per-
formed in fixed-point arithmetic in either standard or
CORDIC-based approach are presented in Table 2. It

is apparent that the singular value matrix, S, and the
two unitary matrices, U and V can be calculated with
very good precision using CORDIC algorithm.

Table 2. SVD implementation error: 16-bit
fixed-point versus floating-point.

Standard approach CORDIC approach
S U V S U V

0.90% 5.99% 5.52% 0.57% 0.01% 0.07%

Assuming that the channel decorrelation is executed
100 times per second, the total number of thread
cycles required to convert the MIMO-OFDM channel
into indepenent SISO channels is 1,608,695 × 100
= 160,869,500 for the full-CORDIC approach, and
1,630,251 × 100 = 163,025,100 for the semi-CORDIC
approach. Since a thread runs at 75 MHz, three threads
of a SB3011 processor are needed to perform MIMO-
to-SISO conversion, which means a processor occu-
pancy of less than 10%. The remaining threads are
used to implement the communication protocol.

7. Conclusion

When hardware and instructions for the CORDIC
algorithm are provided, the Givens rotation method
becomes an attractive method to perform QR de-
composition and SVD in software. The CORDIC-
augmented Sandblaster processor exhibits a significant
speed-up and provides better arithmetic precision over
the standard Sandblaster processor when decomposing
a MIMO-OFDM channel into multiple independent
SISO channels. Since Sandblaster is a SIMD-VLIW
processor with a powerful DSP instruction set, such
an improvement within its target application domain
indicates that a CORDIC-augmented Sandbridge is
promising in implementing MIMO-OFDM systems.

References

[1] D. Gesbert et al., “From Theory to Practice: an
Overview of MIMO Space-Time Coded Wireless Sys-
tems,” IEEE J. on Selected Areas in Comm., vol. 21,
no. 3, pp. 281–302, Apr. 2003.

[2] R. D. van Nee and R. Prasad, Eds., OFDM for Wireless
Multimedia Comm., Artech House Publishers, 2000.

[3] H. Bölcskei, Principles of MIMO-OFDM
wireless systems, 2004. [Online]. Available:
http://www.nari.ee.ethz.ch/commth/pubs/p/crc03

[4] D. Perels et al., “ASIC Implementation of a MIMO-
OFDM Transceiver for 192 Mbps WLANs,” European
Solid-State Circuits Conf. (ESSCIRC 05), pp. 215–218,
Sept. 2005.

[5] J. Glossner, E. Hokenek, and M. Moudgill, “Multi-
threaded Processor for Software Defined Radio,” in
Proc. the 2002 Software Defined Radio Technical Conf.,
vol. I, San Diego, California, Nov. 2002, pp. 195–199.

[6] J. Glossner et al., “Sandblaster Low-Power Multi-
threaded SDR Baseband Processor,” in Proc. Third
Workshop Applications Specific Processors (WASP’04),
Stockholm, Sweden, Sept. 2004, pp. 53–58.

[7] L. Trefethen and D. Bau, Numerical Linear Algebra,
Soc. for Industrial and Applied Math. (SIAM), 1997.

[8] V. N. Kublanovskaya, “On some algorithms for the
solution of the complete eigenvalue problem,” USSR
Comput. Math. and Math. Physics, no. 3, pp. 637–657,
Mar. 1961.

[9] J. Francis, “The QR transformation – Part 1/2,” The
Computer Journal, vol. 4, no. 3/4, pp. 265–272/332–
345, Oct. 1961/Jan. 1962.

[10] E. Kogbetliantz, “Solution of Linear Equations by
Diagonalization of Coefficients Matrix,” Quarterly of
Applied Math., vol. XIII, no. 2, pp. 123–132, 1955.

[11] G. Forsythe and P. Henrici, “The Cyclic Jacobi Method
for Computing the Principal Values of a Complex
Matrix,” Trans. of the Am. Math. Soc., vol. 94, no. 1,
pp. 1–23, Jan. 1960.

[12] J. Charlier, M. Vanbegin, and P. V. Dooren, “On
Efficient Implementations on Kogbeliantz’s Algorithm
for Computing the Singular Value Decomposition,”
Numerische Mathematik, vol. 52, no. 3, pp. 279–300,
May 1988.

[13] C. Meyer, Matrix Analysis and Applied Linear Algebra,
Soc. for Industrial and Applied Math. (SIAM), 2000.

[14] M. W. Gentleman and H.-T. Kung, “Matrix triangular-
ization by systolic arrays,” in Proc. Int’l Soc. for Op-
tical Engineering (SPIE), Real-Time Signal Processing
IV, vol. 298, Jan. 1981, pp. 19–26.

[15] T. F. Coleman and C. F. van Loan, Handbook for Matrix
Computations, Soc. for Industrial and Applied Math.
(SIAM), 1988.

[16] J. E. Volder, “The CORDIC trigonometric computing
technique,” IRE Trans. Electronic Computers, vol. EC-
8, no. 3, pp. 330–334, Sept. 1959.

[17] J. Walther, “A unified algorithm for elementary func-
tions,” in Proc. Spring Joint Computer Conf. of the
Am. Fed. of Information Processing Societies (AFIPS),
vol. 38, Arlington, Virginia, 1971, pp. 379–385.

[18] G. H. Golub and C. F. van Loan, Matrix Computations,
The Johns Hopkins University Press, 1996.

[19] D. Patterson and J. Hennessy, Computer Architecture.
A Quantitative Approach, Morgan Kaufmann, 1996.

[20] B. Parhami, Computer Arithmetic: Algorithms and
Hardware Designs, Oxford University Press, 2000.

