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Abstract—In this paper, a configurable coding scheme is pro-
posed and analyzed with respect to computational complexity and
distortion (C-D). The major coding modules are analyzed in terms
of computational C-D in the H.263 video coding framework. Based
on the analyzed data, operational C-D curves are obtained through
an exhaustive search, and the Lagrangian multiplier method.

The proposed scheme satisfies the given computational con-
straint independently of the changing properties of the input video
sequence. A technique to adaptively control the optimal encoding
mode is also proposed. The performance of the proposed technique
is compared with a fixed scheme where parameters are determined
by off-line processing. Experimental results demonstrate that the
adaptive approach leads to computation reductions of up to 19%,
which are obtained with test video sequences and compared to
the fixed, while the peak signal-to-noise ratio degradations of the
reconstructed video are less than 0.05 dB.

Index Terms—Complexity distortion optimization, dynamic
programming (DP), hybrid video coding, Lagrangian relaxation,
optimal resource allocation.

I. INTRODUCTION

MULTIMEDIA communications involving audio, video
and data has been an interesting topic because of the

many possible applications. Recently, hardware platforms for
hand-held devices such as PDAs have improved dramatically,
which has created a special interest in implementing videos
in portable devices. However, video-coding algorithms are still
much too complex for implementation in hand-held devices,
which are powered by batteries with a limited storage capacity.
Therefore, computationally configurable video coding schemes
would be beneficial for such constrained environments.

The question is how to achieve optimal computing resource
allocation among encoding modules for given computational
constraints, so that the system can make the best use of limited
computing resources to maximize its coding performance in
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terms of its video quality. Work in the area of optimal video
coding is reviewed in [1] and [2]. One of the common ap-
proaches is to optimize the bit allocation by taking into account
the resulting rate and distortion. Although this is a good ap-
proach to deal with bandwidth limitations, this may not give
good performance where the computational complexity is the
main limitation.

The rate distortion optimization problem in a video coding
framework is addressed in [3] and [4], where motion estima-
tion (ME), mode decision, and quantization are considered ei-
ther separately or jointly for the best tradeoff. Although com-
plexity is addressed in conjunction with rate and distortion, only
the discrete cosine transform (DCT) and inverse DCT (IDCT)
modules of the video coding system are considered [5], [6].

In this paper, the performance of a configurable video system
is analyzed with respect to computational complexity and dis-
tortion (C-D). The system consists of three coding modules,
each having a control parameter (such as window size in ME)
controlling the computational complexity and the quality of the
reconstructed video sequence. The approach considered here
is different from the one in [7], where an iterative method is
used to find the optimal control variables. More specifically the
method in [7] measures the system complexity in terms of aver-
aged frames per second, while the one proposed in [5], [6] gives
the predetermined complexity of the coding system regardless
of the varying input contents and sequence. [35] introduces a
baseline framework of the proposed concept and presents in-
terim results. Based on the previous work, we here extend it to
an adaptive scheme whereby more accurate control parameters
are found particularly with active sequences.

This approach could be reasonably accurate enough to esti-
mate the system complexity as far as major coding modules are
taken into account in the system configuration. The C-D data is
obtained by analyzing the operations required for each module,
and by evaluating the distortion in the reconstructed sequence
for the possible control parameter values.

This paper is organized as follows. In Section II, a gen-
eral formulation of the optimization problem is presented. In
Section III, the computational C-D of major coding modules
are analyzed. An operational C-D curve is obtained using the
analyzed data from test video sequences, and an adaptive con-
trol scheme is introduced in Section IV. Finally, its implications
for the performance of the coder are discussed, and concluding
remarks given, in Section V.
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II. GENERAL PROBLEM FORMULATION

Consider a video coding system that is decomposed in
modules . Each module , is as-
signed a control variable , which determines both the com-
putational complexity required for coding and the distortion of
the reconstructed video sequence. Each control variable can
take distinct values from the set
for . With these definitions, it is now possible
to express the computational complexity for the
video coding system as

(1)

where is the computational complexity for each coding
module . The complexity for each coding
module depends on the control variable for this module .

The distortion between the original and the reconstructed
video sequence can be represented as . Each
coding module , contributes to
even though the individual contributions are not additive. The
distortion depends again on the control variable for each
module .

The problem considered here is finding the control variable
values for the coding modules, which would lead to min-
imal distortion of the reconstructed video sequence for a given
limited computational complexity. This can be formulated as
follows:

(2)

subject to .
This is a constrained optimization problem where the opti-

mization variable can take distinct values. A known
approach [26]–[31] to solve this constrained optimization
problem is to consider the following unconstrained optimiza-
tion problem

(3)

where the Lagrangian multiplier is a nonnegative number. It
is well known in operational research that the Lagrangian re-
laxation method will not necessarily give the optimal solution,
since the Lagrangian multiplier can reach only the operating
points belonging to the convex hull in the operational com-
plexity-distortion curve. When sweeps from 0 to infinity, the
solution to problem (3) traces out the convex hull of the com-
plexity distortion curve.

The Lagrangian multiplier allows a tradeoff between C-D.
When , minimizing the Lagrangian cost function is equiv-
alent to minimizing the distortion. Conversely, when becomes
large, the minimization of the Lagrangian cost function is equiv-
alent to minimizing the complexity. Many fast algorithms have
been developed by several authors [32]–[34] to find the optimal

. Hence, assuming an optimal Lagrangian multiplier for the
given computational constraint is given through either a fast or
an exhaustive search of the Lagrangian multiplier, the problem
now is to find the optimal solution to the unconstrained problem
of (3).

Fig. 1. Configurable coding scheme with scalable coding parameters.

In this analysis, a configurable video coding scheme like the
one outlined in Fig. 1 is considered. For our analysis it is as-
sumed that the system consists of three major coding modules
with corresponding control variables:

ME module where the control variable can take
values from the set corresponding to
variable search range, , respectively;
integer or fractional (I/F) pixel accuracy in ME, where
the control variable can take the values (integer)
or (fractional) pixel accuracy;
DCT where the control variable can take values from
the set corresponding to different
DCT coefficient pruning options ,
respectively.

III. COMPLEXITY AND DISTORTION ANALYSIS

In this section, the computational complexity of each of these
coding modules is evaluated. Our complexity computation con-
siders all processor instructions, including multiplications and
additions with the same weighting factor as one instruction, as
in [12]. Since we are interested in the relative complexity and
accuracy, the computational complexity for only one frame is
computed.

A. ME Module

There are many block-matching fast search algorithms, such
as TSS [10], 2-D LOG [9], DS [11], [12], Conjugate Directional
Search (CDS) [42], and so on, which have been developed to re-
duce the computational complexity of a full exhaustive search
algorithm. TSS is one of the fast search algorithms, reducing
computational complexity to , where is the search range
parameter. The size of the initial step, and the next, is calcu-
lated by dividing the search range parameter by 2 in each.
The number of search points is eight in each step, except in the
initial one, which needs one more point in the zero vector lo-
cation. Note that the computational complexity of TSS given in
the number of search points is constant, not changing with the
varying contents in the video sequence. In TSS, the search points
are pre-defined for all macroblocks, as shown in Fig. 2. Other
algorithms, such as DS and CDS, search for the motion vector of
the macroblock starting from the zero vector location until the
best motion vector are found that meet the given cost measure,
the locations and the total number of search points changes for
each macroblock.
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Fig. 2. Search points according to the different search window in the three-step
search.

This deterministic property of TSS can be used in imple-
menting a configurable coding system with a hard-control fea-
ture. Therefore, this search range parameter is chosen as a con-
trol parameter in a tradeoff between complexity and accuracy.
Fig. 2 shows the number of search points with regard to the
search range, where zero vector MV(0, 0) is assumed as the real
vector giving the minimum cost function. The numbers 1, 2, 3,
and 4 in the figure, which mean the window size of the mo-
tion vector search, correspond to 3 3, 5 5, 7 7, and 9 9,
respectively.

The complexity analysis here is based on a frame size of
176 144 QCIF format, a block size of 16 16 and the use
of the Mean Absolute Difference (MAD) as the matching crite-
rion. The MAD calculation can be represented as below.

(4)

where is the macroblock being compressed;
is the reference macroblock, and and are

the search location motion vectors; is the macroblock size.
The evaluation of each MAD cost function requires 2 256 load
operations, 256 subtraction operations, one division operation,
one store operation and one data compare operation, for a total

operations [12]. The overall
computational complexities according to different search ranges
are analyzed in Table I.

B. I/F Module

The accuracy of the motion vectors obtained can be im-
proved using half pixel accuracy [10]; that is, by using eight
surrounding half-pixels from the integer pixel location. First,
computing operations for bilinear interpolation per macro
block are 324 data loads, 162 additions, 162 divisions, 486

TABLE I
COMPUTATIONAL COMPLEXITY AS A FUNCTION OF THE

SEARCH WINDOW SIZE FOR THE ME SEARCH USED

data accumulations, and 162 data divisions, for a total of 1296
operations. Therefore, for the QCIF format and block size of
16 16, the total number of operations for a half-pel search
can be evaluated as follows:

(Total number of operations per MAD cost function

Number of search locationssurrounding integer motion vector

Bilinear interpolation per integer motion vector)

(Number of macro blocks)

(5)

C. DCT Module

DCT has been used for most image and video coding stan-
dards because its energy compaction performance is close to that
of Karhunen–Loeve Transform (KLT), known as the optimum
image transform in terms of energy compaction, sequence en-
tropy and de-correlation. Most of the energy is compacted into
the top left corner, so that the least number of elements are
required for its representation. The basic computation of the
DCT-based video and image compression system is the trans-
formation of an 8 8 image block from the spatial domain to
the DCT transform domain. The two-dimensional (2-D) 8 8
transformation is expressed by (6) [14]

(6)

where for and otherwise. The 2-D
DCT transform can be decomposed into two one-dimensional
(1-D) 8-point transforms, as (6) can be modified as

(7)

where denotes the 1-D DCT of the rows of input .
Regarding computational complexity, the 2-D DCT computa-

tion of the (6) requires 4096 multiplications and additions. How-
ever, using the row-column decomposition approach of (7), it
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Fig. 3. AAN forward DCT flow chart where DCT pruning for y(0) coefficient is represented by the dotted-line.

can be reduced to 1024 multiplications and additions, four times
less than that of (6). Although the separability property of DCT
has reduced the computational complexity, these numbers are
still prohibitive for real-time application. Until now, many fast
DCT computation algorithms [20]–[22] have been developed
utilizing transform matrix factorization as well as the previously
developed fast discrete fourier transform (FFT). However, since
the quantizer follows the DCT computation unit in most image
and video coding systems, the DCT computational complexity
can be further reduced. All of the multiplications occurring in
the last stage of transform can be absorbed into the following
quantizer unit. In other words, this computation yields the scaled
version of the real DCT output. The computational complexities
of the most commonly used fast DCT algorithms can be ana-
lyzed in the scaled-DCT approach [22]. The AAN scheme [33],
adopted for the implementation of DCT pruning in this section,
is the fastest implementation among the scaled 1-D DCT algo-
rithms. It adopts the small and fast FFT algorithm developed by
Winograd requiring only five multiplications and 29 additions,
and is expressed as follows:

(8)

where for and otherwise, and
are the real part of the 16-point DFT, whose inputs are

double sized, with inputs . Its flow chart for
forward DCT calculation is shown in Fig. 3. Note that for real
DCT data, outputs of the flow graph should be multiplied by
constants in the (8). However, these multiplications, can be ab-
sorbed into the quantization process, giving overall computation
reduction since DCT outputs are quantized for compression in
most video and image coding systems.

One property of the DCT transform is efficient energy com-
paction, and the human visual system (HVS) is no more sensi-
tive to high frequency components than the low frequency ones.
These facts can be used to make computation-intensive DCT
transform scaleable and controllable in its computational com-
plexity. Some of the DCT coefficients can be pruned, since they
do not need to be calculated at all. The DCT pruning reduces
the computational complexity of the DCT transform, since it has
an efficient energy compaction property and the most important

information is kept in the low frequency coefficient. The dotted
line in Fig. 3 shows required computations when DCT pruning is
applied to the transform coefficient, where a total of seven
additions are needed. Pruning DCT transform is studied in [23]
and [24].

A transform [23] derives an analytical form of computational
complexity, where DCT pruning is applied to a fast 1-D DCT
algorithm [25] with 12 multiplications and 29 additions. How-
ever, in this paper, AAN DCT is adopted in the computational
complexity analysis of DCT pruning, since it is the best among
the known 1-D DCT algorithms.

In [14], algorithmic complexity of the 2-D DCT algorithm
is analyzed using row-column decompositions, which performs
1-D DCT two times for each of the rows and columns of 8 8
input data. A similar complexity measure can be applied to the
AAN algorithm [22]. Table II shows the number of operations
required to compute the DCT coefficients for each 8 8 block,
and a frame of QCIF format when different pruning is used.
In the table, 1-D and 8 8 mean 1-D 8-point and 2 D 8 8
DCT, respectively. It estimates the number of multiplications
and additions as well as the total sums, with the assumption that
the same weighting factor is given to both multiplication and
addition. In Fig. 3, 1-D 8-point DCT requires eight data loads,
five DCT coefficients, eight data stores, five multiplications, and
twenty-nine additions, for a total of 55 operations. Therefore, in
the 8 8 2-D block, the total number of operations becomes

operations. It also shows how much DCT pruning
performs the relative reduction of computation compared to the
8 8 full DCT.

The DCT pruning basically discards high frequency compo-
nents in the transform domain, although it incurs image quality
degradation. Fig. 4 shows reconstructed video frames after
the DCT pruning operation. More coefficients are pruned, and
more quality degradation occurs in the reconstructed frames.
It is interesting to note that applying DCT pruning with a
4 4 window or an 8 8 full DCT makes little difference in
terms of subjective quality, although there is a difference in
the objective performance of about 1.1 dB peak signal-to-noise
ratio (PSNR). This can be explained by the fact that the DCT
has a property of high efficient energy compaction, and most
energy is concentrated in the upper left corner. Accordingly,
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TABLE II
COMPUTATION COMPLEXITY AS A FUNCTION OF PRUNING FOR THE DCT MODULE

Fig. 4. Reconstructed video frames with DCT coefficient pruning (QP = 13, Intra I-frame, and H.263). (a) 2� 2(25.660 dB). (b) 4� 4(30.650 dB).
(c) 6� 6(31.739 dB). (d) 8� 8 full DCT(31.740 dB).

the computational complexity of DCT can be traded off with
the reconstructed image quality using, the DCT pruning.

The overall computational complexity can
be calculated from the (1) and the above discussion, while
the overall distortion can be estimated by ex-
haustive simulation for all possible operation modes of control
variables, and averaged over a number of sequences and a
number of frames for each sequence. In the given system, there
are total 32 modes consisting of combinations of the three
control variables , and , corresponding to ME, I/H, and

DCT, respectively. Table III shows the overall computation
and distortion data for all 32 operating modes. Computational
complexities are represented in a total number of reduced
instruction set computer (RISC)-like instructions per frame,
while distortions are measured in the PSNR as follows:

(9)

(10)
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TABLE III
AVERAGE PSNR DATA AND COMPUTATIONAL COMPLEXITY OF ALL OPERATION MODES WHERE

FIVE VIDEO SEQUENCES WERE APPLIED AND THEIR RESULTS WERE AVERAGED

where MSD is an acronym of mean squared difference and
is the number of pixels in the frame, and and are the
intensity value of the original and the reconstructed frame. Note
that the video coding system was set to the variable bit rate mode
where its quantization parameter was fixed over the whole video
sequence. The overall distortion data were measured in PSNR
by averaging over 100 P-frames, using five video sequences,
including Carphone, Miss America, Foreman, Salesman, and
Claire.

IV. EXPERIMENTAL RESULTS

Based on the data in Table III, we searched optimal operating
modes. Given the computational constraints , we were able
to find optimal operating points by solving the optimization

problem given in (2) and (3). We used two approaches, exhaus-
tive search and the Lagrangian multiplier method. Note that our
goal here was to find control variables , and , to max-
imize the cost function of the optimization problem, since we
dealt with the overall distortion in PSNR.

Let represent an optimal operating
point where is the number of total optimal points by
a search pro-cess. Using an exhaustive search, 11 optimal
operating points were found and identified with to
in Fig. 5(a). Their control parameters are the same as fol-
lows:

, respectively.
However, as shown in Table IV, the Lagrangian method, de-
tected only 8 optimal operating points. Optimal operating points
not located on the convex hull curve are not detected [28]. This
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Fig. 5. Optimal operating modes found through exhaustive search over the real-measured C-D (PSNR) data with test video sequences. (a) Optimal operating
modes. (b) Control parameters.

is shown graphically in Fig. 5(a), where optimal operating
points are drawn with a solid line, and a dotted line corresponds
to an exhaustive search and the Lagrangian multiplier method,
respectively. Fig. 5 also demonstrates how important it is, from
an overall system performance point of view, to select optimal
operating modes among control variables. Note that four oper-
ating modes A, B, C, and D are identified using the marker “ ”
in the figure, whose control parameters are, respectively given
as follows: , and .

Operating modes and have similar av-
erage PSNR distortions, but significant difference in complexi-
ties requiring and operations, respectively.
Operating modes and have similar com-
plexities concerning operations, but a 3.48 dB differ-
ence in PSNR performance. This indicates that more computa-
tions do not necessarily perform better in an overall computation
complexity space, which consists of combinations of all indi-
vidual control variables. As expected, selecting optimal values
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Fig. 6. Comparison in subjective quality for two modes, “A” and “B” of Fig. 5 requiring similar computational complexity: the 6th frame, inter-coding, and
QP = 13 in the sequence “Carphone.”

TABLE IV
OPTIMAL OPERATION MODES FOUND THROUGH LAGRANGIAN METHOD

WHERE THE GIVEN COMPUTATIONAL COMPLEXITY IS CONTROLLED BY

LAGRANGIAN MULTIPLIER � OVER C-D DATA

of the control variables significantly influences the system’s
overall performance.

To demonstrate a comparison in the subjective performance,
two sample video clips are shown in Fig. 6, where the subjec-
tive quality is clearly distinct between two operating modes,

and of Fig. 5(a), closely located about
in the complexity axis. From this example, it is evident that

the C-D optimal mode decision significantly affected the sub-
jective performance of the video coding system.

In Fig. 5(b), there are four regions classified according to
the complexity and the distortion as follows: HD/LC (High dis-
tortion and low complexity), HD/HC (high distortion and high
complexity), LD/LC (low distortion and low complexity), and
LD/HC (low distortion and high complexity). As shown in the
figure, two regions HD/LC and LD/LC require low complexities
and locate down and up in the left. On the other hand, HD/HC
and LD/HC require high complexity and locate up and down
in the right, respectively. Looking into the control parameters

of modes and comparing one another located in different re-
gions, it turns out that ME significantly influences the overall
complexity, while DCT and H/I influence the overall distortion
more than ME relatively.

A. Adaptive Mode Control

Video sequences have variations in characteristics including
motion. This means that optimal operating modes defined by
coding parameters change along with the changing video se-
quence. In other words, optimal C-D points should be controlled
adaptively to achieve better performance. The adaptive control
approach in regard to the operating modes is implemented and
compared to the fixed approach. For the fixed method in the
operating model control, the optimal control parameters given
by are searched in the initialization of the video
encoding, under the given computational constraint, .
These selected control parameters are used for all video frames
and there is no update of the control parameters through whole
video sequences. For the adaptive approach, however, the
optimal control parameters for the next frame

are searched iteratively after encoding every frame based
on the C-D data, whose data entry is updated with the distortion
of control parameters at the current frame .

Basically, this adaptive scheme arises from the fact that the
frame distortion varies through the entire video sequence. The
update equation for the new optimal mode in the adaptive ap-
proach is given below

subject to (11)
where are the optimal control parameters for the
frame and is the distortion data in the C-D
table, whose data entry is updated using the distortion of control
parameters at the current frame . In more detail,
the algorithm of the adaptive mode control is described in the
following steps.

Step 1) Let the computational constraint be given,
and is set for the I-frame
coding in the first frame. Assume that the initial
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TABLE V
PERFORMANCE COMPARISON BETWEEN THE FIXED AND THE ADAPTIVE CONTROL OF THE OPERATING POINT,

(S ; S ; S ) WITH VIDEO SEQUENCES USED IN THE MODEL ESTIMATION

C-D data table, as given in Table III, is available by
pre-processing off-line.

Step 2) Encode the first frame in the I-frame mode using
control parameters initially given

.
Step 3) Optimal control parameters for frame

are searched from the C-D table. Encode in P-frame
mode from the second frames.

Step 4) Calculate the distortion of at the
frame corresponding to the control parameters

. Update the C-D table entry with the
distortion .

Step 5) Increase the frame number and jump
back to Step 3. Repeat Steps 3–5 until the end of
sequence.

In following comparisons of rate performance, the video
coding system was set to the variable bit rate mode, where its
quatization parameter was fixed over whole video sequence,
since the distortion model parameters were estimated with
the fixed quantization parameter. Table V shows experimental
results with the fixed and the adaptive control of operating
modes. The same five video sequences involved in the estima-
tion process of the distortion parameters in the C-D model were
used for the experiment. All 100 frames were coded and aver-
aged, where the first frame was intra-coded and other following
frames were inter-coded with the quantization parameter (QP)
set to 13.

Let a variable denote a weighting factor
to the computation complexity of the system represented by
the maximum values of operation modes. The computational
constraint value is relative to the maximum system com-
plexity and derived by multiplying it with the constraint control
variable . It is shown in the table that is controlled by the

constraint control variable . This can be calculated by multi-
plying the control variable to the maximum complexity of the
operation mode, , in the C-D model. This calculation
can be given as

(12)

where is the constraint control variable and
is the complexity for the operating mode ,
having the maximum complexity in the C-D model. The max-
imal complexity mode corresponds to
in the C-D model shown in Table III. In Table V, as an example,
the constraint control variable was set to .

It is clearly proven in the table that the adaptive control
works better with an active sequence, having more motions
than with other silent sequences. For example, Carphone,
Foreman, and Salesman sequences showed better performance
with an adaptive control feature, while other silent sequences
such as Miss America and Claire showed no significant dif-
ference between the fixed and the adaptive control methods.
With the sequences Foreman and Salesman, the computational
complexity saved about 11% using the adaptive control, while
it incurs degradation, less than 0.06 dB. We also investigated
how C-D optimization methods affect total bit rates. Generally,
the bit rate is related to the coding efficiency, including mo-
tion estimation. As shown in the table, there is no significant
difference of bit rate between the two control modes. Fig. 7
shows complexity changes according to the operating modes
detected adaptively by the C-D optimization algorithm. In the
figure, operating modes are repre-
sented with the control parameters . Complexity
numbers corresponding to the operating modes are the same
as ones shown in Table III. For example, the first 10 operating
modes are given as follows, respectively:
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TABLE VI
PERFORMANCE COMPARISON BETWEEN THE FIXED AND THE ADAPTIVE CONTROL IN THE OPERATING POINT,

(S ; S ; S ) WITH OTHER VIDEO SEQUENCES NOT USED IN THE MODEL ESTIMATION

Fig. 7. Operating mode found by adaptive C-D control in the sequence
“Foreman.”

.
Note that the distortion parameters of the C-D model were

estimated using five video sequences. It would be interesting
to investigate how much more effective the estimated model
parameters would be with other video sequences not involved
in the model estimation process. Table VI shows experimental
results using the following five video sequences: Container,
Grandma, Mothr dautr, News, and Suzie. The quantization
parameter QP was fixed to 13. The first frame was intra-coded
and those that followed were inter-frame coded. For the sake
of comparison, the results were obtained by averaging over

100 frames. As shown in the table below, the C-D model
works well, even with other video sequences not considered in
the model estimation process. With active sequences such as
Container and News, the adaptive control method performed
best in the C-D optimization.

With the various sequences above, computation reductions
were obtained up to 19% compared to the fixed method, while
the degradations of the reconstructed video were less than
0.05 dB. Furthermore, there was no significant difference be-
tween the adaptive and the fixed methods in rate performance.
Based on these experimental results, it is evident that the esti-
mated C-D model parameters are accurate enough to be applied
to most video sequences, regardless of their motion.

V. CONCLUSION

The performance of a computationally configurable video
coding scheme with respect to computational C-D, has been
analyzed. The proposed coding scheme consists of three coding
modules: motion estimation, sub-pixel accuracy, and DCT
pruning, whose control variables can take several values,
leading to significantly different performance for the coding.
This analysis confirms that a configurable video coding system
where the control parameters are chosen optimally leads to
better performance. To evaluate the performance of proposed
scheme according to input video sequences, we applied video
sequences other than those involved in the process of model
parameter estimation, and showed that the model parameters
are accurate enough to be applied regardless of the type of input
video sequences.

Furthermore, an adaptive scheme to find the optimal control
parameters of the video modules was introduced and compared



KWON et al.: PERFORMANCE AND COMPUTATIONAL COMPLEXITY OPTIMIZATION IN CONFIGURABLE HYBRID VIDEO CODING SYSTEM 41

with the fixed. The adaptive approach was proven to be more ef-
fective with active video sequences rather than with silent video
sequences.
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