
Path Difference Learning for Guitar Fingering Problem

Aleksander Radisavljevic and Peter Driessen

Department of Electrical and Computer Engineering, University of Victoria, British Columbia
peter@ece.uvic.ca

radis@pacificcoast.net

Abstract
In this paper we address the problem of mapping guitar
music score into one of possible alternative fingering
sequences on the fretboard grid. We use dynamic
programming (DP) to model the decision process of a
guitarist choosing the optimal fingering sequence. To
estimate the DP cost functions based on examples of guitar
fingering transcriptions (tablatures) we developed an
original method named "path difference learning”
employing a gradient descent search on the coefficients of
the cost function. Features of the fingering alternatives that
capture the essence of the mechanical difficulty and musical
quality are used to reject impractical fingerings and thus
reduce the DP search complexity. Our experiments for
several classical guitar pieces showed consistent
convergence of the path difference learning. The adaptation
resulted in a significant decrease in error count compared
to manually selecting the cost function weights.

1 Introduction
String instruments with fixed fret positions such as

guitar offer multiple alternative positions, i.e. string-fret
combinations where a given note can be played. Each
position can furthermore be played by any of the four left-
hand fingers and considering that multiple notes are played
at the same time, it becomes apparent that there exists a
large number of possible fingering alternatives for a single
set of notes. As the guitarist executes a song she selects one
of the large number of possible paths that minimizes the
mechanical difficulty of the resulting sequence including the
transition difficulty from one stage (set of notes) to another.
In addition to the ease of play the player evaluates and
selects the fingering sequence based on musical criteria such
as matching the acoustical quality of all vibrating strings
(Sayegh 1989). Overall, this transcription process presents
a significant analytical challenge for most novice to
intermediate players. To address this problem the guitar
music notation evolved to include occasional fingering
information such as fret number or finger label. Another
more effective solution came with the emergence of guitar
tablature (Phillips, Chappel and Chappel 1998) where the

six line notation represents guitar strings and the
superimposed numbers indicate the frets of the played notes.

The idea of applying computer-based expert systems
toward the guitar fingering problem is found in (Sayegh
1989) which reports a number of rules used by expert
guitarist in decision making and proposes the optimum path
paradigm as a suitable method for applying these criteria
and calculating the optimal fingering solution. The optimum
path paradigm is equivalent to dynamic programming (DP)
in its special case for deterministic systems (Bertsekas
1987). The main challenge in the use of DP for guitar
fingering is the lack of an explicit cost function. For
example, weighing the cost function to favor large changes
in fret positions vs. movement of fingers to different strings
is a difficult and highly subjective decision to make.
Furthermore, it is known that guidelines for fingering guitar
music differ for various guitar styles, such as Baroque, Folk,
Blues, (Gilardino 1975), (Phillips, Chappel and Chappel
1998) as well as individual playing styles. Each of these
styles would therefore require a different cost function. To
avoid the time consuming process of interviewing expert
guitarists and manually adjusting cost function weights we
developed a method of learning cost function weights from
published tablatures (Harris, 1999), (OLGA, 2004). Since
this learning procedure seeks to minimize the difference
between the desired and the optimal path we select the term
Path Difference (PD) learning .

2 Optimal Path Solution
A sequence of notes defines a song which is the input

information for the guitar transcription problem. We define
discrete times k=[0,1,2,…,N] as the locations in the
sequence where one or more notes change, due to an onset
or release of a note . These times define the N+1 stages of
the optimal path search graph. Each stage k therefore
presents a set of notes that needs to be executed on the
instrument’s string-fret grid. As notes can generally be
played in a number of different locations using different
fingers each set of notes defines a set of possible fingering
alternatives Sk ={Gk,0, Gk,1, …, Gk,Mk-1} which will also be
referred to as states. These states Gk,l can be represented as a
matrix consisting of one row (string,fret,finger) for each
note (Figure 1).

Figure 1. An example of generating polyphonic fingering
alternatives for a single note set {C5,E4}. Symbols

correspond to fretboard graphics directly above. The
numbers located above each fret-string position identify the

finger used.

Given a list of choices at each stage k the transcription
process selects the fingering alternative from set Sk as
described in Section 1. To measure these criteria we define a
transition cost function Ct(i,j) and static cost function Cs(i).
The former defines the cost of transition between two
consecutive stages, i.e. from state i �Sk to state j Sk+1.
Static cost function takes a single state i as the argument.
The variables i and j are used as a more compact notation
for states taken from sets Sk. A fingering sequence incurs a
total path cost equal to the weighted sum of static and
transition cost terms for the states occurring on the path (see
figure 2). The static cost term is a novel feature we
introduce primarily to model the varying static difficulty of
different fingering alternatives when multiple notes are
played simultaneously.

With cost functions specified we are now able to search
for the optimal path as illustrated in the state transition
graph (figure 2). Dynamic programming algorithm
performs this search efficiently in a stage-by-stage manner
based on Bellman’s principle (Bertsekas 1987). Exhaustive
search, by comparison, would require evaluation of all
possible paths through the transition graph. The dynamic
programming algorithm proceeds backward in a recursive
fashion according to the following equation,

),()(iCiJ sN = NSi³ (1)

),()}(),({min)(1
1

iCjJjiCiJ sktSjk
k

++= ���� kSi³
0,...,2,1 --= NNkfor (2)

where)(iJ k is the minimum cost from state i �Sk to the

terminal node. Retracing this path for)0(0J , i.e. from initial

state yields the globally optimal path.

Figure 2. The state transition graph. The number of states
will in general be different at each k.

3 Using Feature Representation for
Fingering Alternatives

From the definition of states G we observe that there is
a large number of possible polyphonic states achievable
within physical constraints of the left hand. Each
combination of up to 6 positions on a string-fret grid of
6x17 and each combination of associated fingers results in a
unique state. The approach of assigning a static cost to each
state and a transition cost to all possible state transitions
results in prohibitive memory requirements, since
calculating transition cost directly in the state domain would
require a lookup table with an entry for each combination of
states (i,j). Instead we seek to extract features which contain
the information to discriminate between desired and
undesired states. Examples of transition features are
“number of frets traversed by a specific finger”, “finger
changes from used to unused”, etc. Example of static
features are “number of frets between consecutive fingers”,
“average fret location”, “number of empty strings ”, etc. The
cost functions can then be expressed in terms features
extracted from states as following,

ttt wjiFjiC ¼=),(),((3)

sss wiFiC ¼=)()((4)
where feature extraction functions Ft(i,j) and Fs(i) result

in vectors of transition and static features respectively and
weights determine the “relative-importance” of individual
features. In the linear case expressed in (3),(4), the cost is
simply an inner product between feature vectors Ft , Fs and
the weight vectors wt ,ws respectively. Since features nicely
describe important physical aspects of the fingering
alternatives they can be effectively used to reject impossible
states from the combinatorial expansion described in figure
1. This can further greatly reduce the DP search space.

4 Path Difference Learning
PD learning requires a training set which consists of an
input sequence of notes and the corresponding fingering
sequence selected by an expert guitarist. We shall refer to
the later as the desired path within the dynamic
programming transition graph. The desired path, which can
readily be obtained from guitar tablatures, represents a
playing style we seek to model by adjusting the weights of
the cost functions. The resulting weights determine the
relative importance of individual cost measures for this
playing style. The goal of this learning phase is to use the
trained system to generate transcriptions in the same
fingering style for other guitar compositions.
 The main idea behind PD learning is to adjust the cost
function weights until the desired path becomes optimal
within the dynamic programming search (1),(2). To achieve
this search in the cost function weight space it would be
convenient to apply some stochastic search method such as
simulated annealing (Kirkpatrick, Gelatt and Vecchi 1983)

or genetic search (Goldberg 1990), this however results in
prohibitive computational complexity as the dynamic
programming search is evaluated in each trial. In contrast,
PD focuses only on sections where the optimal and the
desired paths are different. In this approach only the two
competing paths are processed placing the focus on states
“ where the differences matter” (figure 3). Consequently the
computational burden is much lower . The indices within
the states in figure 3 are used as the state identifiers and
may be used as arguments i,j for calculating costs Cs and Ct,

Figure 3. State transition graph with two path difference
segments denoted as pairs {desired path, actual path}

{Pd(0),Pa(0)}={(1,2,3,4),(1,8,9,4)} and { Pd(1),Pa(1)} =
{(5,6,7),(5,10,7)}.

In the above example PD learning updates the weights of
cost functions Ct and Cs such that the cumulative cost of the
desired path becomes lower than the cumulative cost of the
actual (previously optimal) path.

PD learning is a form of gradient descent update on cost
function weights such that the total path cost of the desired
path is decreased while the total path cost of the current
optimal path is increased until the desired path becomes
optimal. To avoid complex notation for the general case we
illustrate this process using the example from figure 3
containing the two path difference.

Cumulative path costs before weight updates is:

)0()0(
),4,9(),9(),9,8(),8(),8,1()0(

),4,3(),3(),3,2(),2(),2,1()0(
ad

ttssttsstta

ttssttssttd PP
wCwCwCwCwCP

wCwCwCwCwCP �� �
�

����	
����	

(5)

)1()1(
),7,10(),10(),10,5()1(

),7,6(),6(),6,5()1(
ad

ttsstta

ttssttd PP
wCwCwCP

wCwCwCP
� �

���
���

(6)

The weight update equations are derived by minimizing
an error measure E designed to increase as the ratio of
actual and desired path costs increase. This error measure is
defined as,

Ê ��
��
� ����

��������
j

ad
d

a

st

otherwise

jPjPif
jP
jP

wwE

0

)()(
)(
)(

1
),(

 (7)

The update equations for transition and static weights
then become:

Lkfor
w

jP
jP

w
jP

jPww
j

k
t

d
ak

t

a
d

k
t

k
t ,...,1,0

)(
)(

)(
)(

1

0

1 ���
!""#$ %%&'%%&&'� Ê() *

(8)

Lkfor
w

jP
jP

w
jP

jPww
j

k
s

d
ak

s

a
d

k
s

k
s ,...,1,0

)(
)(

)(
)(

1

0

1 ���
!""#$ %%&'%%&&'� Ê() *

(9)

The condition Pd > Pa in (7) requires that only the
unresolved path difference segments j are used in the
optimization. Gradient descent, therefore, makes changes to
the weight vectors in the direction that reduces the error
measure E . Parameter a in (8),(9) is a fixed step size that
we selected empirically at 0.003. Note that partial
derivatives of cumulative path costs Pd and Pa in (8),(9)
translate simply into partial derivatives of cost functions Ct

and Cs which can be readily calculated without resorting to
numerical methods.

After L iterations the PD gradient descent procedure
corrects some or possibly all path difference segments. The
resulting weight vectors are then used in (1),(2) to compute
the globally optimal path again. This generally results in
new previously unknown path difference segments. PD
learning proceeds by appending the new path difference
segments to the list. This process repeats for several rounds
until no new path differences are discovered (figure 4).
Fortunately, experiments with real guitar fingering data
show that a relatively small number of such rounds are
necessary before path difference list stabilizes.
Furthermore, the stable path difference list contains only a
small fraction of all possible dynamic programming states
therefore maintaining the advantage of low computational
complexity. We are now able to summarize the complete
PD learning procedure in a table of algorithmic steps:

Step-1 Initialize weight vectors as some 0
tw and 0

sw .

Initialize path difference list as an empty list.
Step-2 Calculate the optimal path using (1),(2).

Extract path differences relative to the desired
path (figure 3)

Step-3 If no path difference segments are found,
terminate learning. The result is the latest

k
tw , k

sw
Step-4 Add unique path difference segments to the

path difference list
Step-5 Run gradient descent for Lk iterations (8),(9).

Dependency on k allows us to gradually
increase L in later rounds.

Step-6 Repeat from step-2.

Table 1. PD learning algorithm

Figure 4. PD learning for composition Adagio by Albinoni.
Learning runs for 10 rounds each with 200 gradient descent
iterations. The bottom graph, a snapshot for round 8, shows

the decrease in error E due to gradient descent.

5 Experiments and Results
We selected 7 classical guitar pieces and used published

guitar tablatures as the reference for training and evaluation.
The songs were then shortened to remove repeated sections
since they do not contribute new training information. For
initialization we used the best possible cost function weights
we could obtain via an educated guess and manual tuning.
Results are presented as error count, i.e. the number of
stages where optimal path differs from the desired path. (see
table 2 and 3),

Composition, Composer Total
stages

Initial
Errors

Final
Errors

Adagio, Albinoni 105 13 0
All My Trials, Greene and Carter 90 4 0
Desde el Alma, R. Melo 100 10 0
Love Story, Lai and Sigman 118 20 2
Moonlight Sonata, Beethoven 182 21 1
Allegretto, Mozart 75 2 0
Sch. Mexicano,M. Ponce 77 21 8

Table 2. Training results for 7 selected classical guitar
compositions. PD learning was applied to each composition

individually.

Composition Total
stages

Initial
Errors

Final
Errors

All 7 compositions 747 91 33
Table-3, Training results for 7 selected classical guitar

compositions. PD learning was applied to all compositions
combined.

Overall, PD method of learning cost function weights
achieves the desired adaptation to a given guitar playing
style. Training on individual songs (table 2) shows
excellent adaptation but the results do not perform well on a
test set due to insufficient training data. On the other hand,
training with the combined data set (table 3) yields good
generalization while significantly reducing the transcription
error rate. Note, however, that a complete adaptation is not
achieved due to several possible reasons: 1. desired paths
are not labeled consistently by the expert guitarists, 2. the
cost function features do not contain all the information
involved in decision making and 3. the linear structure of
the cost function does not provide sufficient flexibility. In
summary, we conclude that PD learning meets the desired
objective as it consistently outperforms the manual method
of tuning the cost function weights.

As a side note, when multi-layer feed-forward neural
network is used for functional approximation of cost
functions Ct and Cs the partial derivatives in (8),(9) translate
into the neural backpropagation algorithm (Hertz, Palmer,
Krogh 1991). We expect the neural approximators to
perform better than linear, however, care must be taken to
avoid overfitting and lack of generalization.

References
Bertsekas, P. D. (1987). Dynamic Programming, Prentice Hall,

New Jersey.
Bertsekas, P.D., J.N.Tsitsiklis, (1995). "Neuro-Dynamic

Programming: An Overview", Proceedings of the 34th
Conference on Decision & Control, New Orleans, LA.

Goldberg, D., (1989). Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley Publishing Co.

Gilardino, A.,(1975) "Il Problema della ditteguitara nelle Musiche
per Chitarra," Il Fronimo 10.

Harmony Central, (2004), www.harmony-central.com
Harris, J.,(1999). 50 Classical Guitar Pieces - In Tablature and

Standard Notation, Creative Concepts.
Hertz, A. J., R.G. Palmer, A.S. Krogh, (1991). Introduction to the

theory of neural computation, Addison-Wesley Publishing Co.
Kirkpatrick S., Gelatt C. D. and Vecchi M. P., “ Optimization by

simulated annealing” , Science, May 1983, pp. 220 (4598)
OLGA, (2004), On-Line Guitar Archive, www.olga.net
Phillips,M., John Chappel, Jon Chappel, (1998). Guitar for

Dummies, Hungry Minds.
Sayegh,S.I., (1989). "Fingering for String Instruments with the

Optimum Path Paradigm", Computer Music Journal, vol.13,
No. 3, Fall 1989, pp. 76-83.

