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Variable Bandwidth DPLL Bit
Synchronizer with Rapid Acquisition
Implemented as a Finite State Machine

Helmuth Briigel, Member, IEEE, and Peter F. Driessen, Senior Member, IEEE

Abstract— A digital PLL bit synchronizer with variable loop
bandwidth for rapid acquisition and good tracking performance
is proposed, and its performance analyzed using Markov chain
techniques. Results are presented for the distributions of acqui-
sition time and time to first bit slip in terms of state transition
probabilities. For burst mode data, results for the timing error
and bit error rate as a function of the preamble bit number are
obtained. All results are evaluated by repeated matrix products
and verified by simulation. Comparison of the variable bandwidth
DPLL to a fixed bandwidth DPLL shows significantly faster
acquisition for a given tracking performance.

I. INTRODUCTION

IGITAL phase-locked loops (DPLL’s) are commonly

used for bit synchronization [1] of a digital data stream.
In a multiple access system where data is transmitted in
bursts or packets, rapid acquisition of bit synchronization is
important. This is because rapid acquisition allows the length
of the bit sync preamble at the beginning of a data burst to
be minimized, thus reducing overhead on the data link and
increasing the net data throughput. Once acquisition has been
achieved, reliable tracking is needed to minimize the proba-
bility of a bit or cycle slip. The performance characteristics of
bit synchronizers are discussed in [2].

Traditional DPLL design involves the selection of the order
and bandwidth of the digital loop filter to trade off acquisition
and tracking performance. For a first order DPLL, the loop
filter is a simple gain which determines the DPLL bandwidth
[1]. A high loop gain (wide bandwidth) is needed for rapid
acquisition, whereas a low gain (narrow bandwidth) is pre-
ferred for reliable tracking. Thus any fixed choice of loop
gain represents a tradeoff.

To achieve the benefits of both rapid acquisition and re-
liable tracking simultaneously, this paper considers a DPLL
with variable loop gain, called a variable bandwidth DPLL
(VBDPLL) in the sequel. The variable gains are arranged so
that the loop gain is large at the beginning of a signal for
rapid acquisition, and decreases to a small value for reliable
tracking. For burst mode data where the signal may be absent
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or present, the loop gain increases again after the end of a data
burst. Thus rapid acquisition may be achieved at the beginning
of the next data burst.

The concept of time-varying loop gains with more than
two different loop gains has been reported previously [3]-[5].
The effect of a time-varying loop gain for a first order
loop is approximated by the adaptive multi-level quantized
phase detector of [6]. The variable loop gain is shown to
be equivalent to a Kalman filter gain in [7] under certain
assumptions. For this case, the mean square timing error is
minimized at each timing interval while the signal is present,
thus achieving rapid acquisition and reliable tracking.

Any discrete closed-loop bit synchronizer with uniform
or nonuniform sampling [8] and a finite number of discrete
loop gains may be viewed as a finite state machine. States
are defined by two values: the quantized timing error and
quantized loop gain. The state machine formulation yields two
advantages: it facilitates implementation, and permits analysis
of the performance using Markov chain techniques. The state
transition probabilities needed for this analysis depend upon
the presence/absence of signal, the signaling waveform, signal-
to-noise ratio and the type of phase detector employed.

The paper centers around two ideas: the VBDPLL concept
in the context of burst mode data, and the analysis of a DPLL
as a finite state machine. The main contribution of the paper
is a complete solution for the performance characteristics of a
finite state machine VBDPLL bit synchronizer in terms of the
state transition probabilities. Numerical results are obtained
by evaluating repeated matrix products. The timing error
probability mass function (pmf) (discrete probability density)
as a function of the preamble bit number k is derived, from
which the rms timing error and bit error rate as a function
of k are readily obtained. The distribution of acquisition time
and distribution of the time to first bit slip are derived, from
which mean values of acquisition time and first bit slip time
are obtained. These results can be used to determine the length
of the preamble needed for acceptable performance [9]. The
authors of [10] used Chapman-Kolmogorov (C-K) equations to
derive a numerical solution for acquisition time probabilities
in the case of a sine wave signal and bandlimited noise for
a fixed loop gain. In [11] C-K equations are used to derive
approximations for steady state pmf’s of the timing error.
A solution for the distribution of acquisition time assuming
low-pass filtered noise and time varying gains has not been
previously found [2].
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Fig. 1. Bandlimited baseband binary data transmission system.

To illustrate the VBDPLL performance, numerical results
are given for the first-order VBDPLL with a zero-crossing
type phase detector and sine wave signaling waveform in the
preamble. However, results may be calculated for any other
type of signaling pulse and phase detector by recomputing
the state transition probabilities. The results may also be
generalized to second and higher order DPLL’s by defining
additional states [12]. The results presented here assume
that successive noise terms in (7) are independent, but this
assumption can be relaxed by adding additional states [12].
The 1st order VBDPLL finite state machine is implemented
with a 256 KB read-only memory and a latch as part of a
commercial modem product [12].

The paper is organized as follows. In Section II, the signal-
ing waveform and phase detector used to illustrate the results
are given and the operation of the variable loop gain bit
synchronizer is described. The finite state Markov model is
developed in Section III and the timing error pmf’s versus
preamble bit number & are derived in terms of the state
transition probabilities. Section IV contains the derivation of
the distribution of acquisition time and first bit slip time, and
the corresponding means. Numerical and simulation results are
given in Section V, followed by conclusions in Section VI.

II. SYSTEM DESCRIPTION

A. Signaling Waveform and Phase Detector

In this section, the signaling waveform and phase detector
used to obtain numerical results for the VBDPLL performance
are given. Consider the binary communications system whose
baseband equivalent model is shown in Fig. 1. The transmit
and receive filters Hr(f) and Hg(f) form a matched filter
pair whose output is the baseband binary PAM signal

2(t) =) arg(t — kT — ) + n(2) 1)
k

when signal is present and z(¢) = n(¢) when signal is absent.
In equation (1) ax € {—1,+1} are independent zero mean
binary numbers, T' is the symbol duration and g¢(¢) is the
baseband pulse which is assumed to satisfy the first Nyquist
criterion. The delay e is assumed to be constant during a data
burst but it may change from one data burst to another. The
term 7)(t) is formed by filtering additive white Gaussian noise,
with single sided power spectral density Ny, through Hg(f).

Each data burst is preceded by a preamble of a 10101...
pattern to maximize the number of zero crossings for rapid
synchronization, with ay = —ay41 for all & up to the preamble
length. For a random data pattern the number of zero crossings
would be half (on average) compared to a 10101 ... pattern,
hence all acquisition times obtained would be doubled. In the
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sequel, we assume that

) = C-cos(%) for—T/2<t<T/2
=0 otherwise

2

so that the received preamble is a simple sine wave. We
also assume that Hp(f) is approximated by a third-order
Butterworth filter for simulation purposes.

A zero crossing will occur at

t=kT +to+ e+ ny 3)

where tg is the nominal zero crossing location relative to the
optimum sampling instant ({o = 7'/2 for a sine wave) and n;,
is the horizontal zero crossing displacement due to additive
noise at the k-th symbol.

The receiver determines the polarity of the received bit 4zby
sampling the received and hard limited waveform at

t=kT + ¢ @

where ¢, is the synchronizer’s estimate of ¢ for the data symbol
@r. The synchronizer’s timing error is

er = {€ — €k }tmod T 5)

where {-}.,.04 7 indicates the timing error is modulo 7T reduced
in the range (—T7'/2,T/2] since timing errors differing by
integer multiples of T are indistinguishable in steady state.

We assume a zero crossing based timing error detector or
phase detector (PD) [13], however any PD with a discrete
output can be used. For every detected zero crossing the PD
generates an output ¥y, proportional to the difference between
the location of the detected zero crossing kT +1to +€+ny from
(3) and the predicted location kT + ¢y + €, and quantized to
M discrete values

U = Q1[{€ — & + Pk }mod TKpPD) (6)
= q1[{ex + "k }mod TKPD) Q)

where ¢;[-] is the quantizer characteristic which quantizes its
argument to the next larger integer. The PD gain Kpp = M/T
is chosen to yield M integer PD outputs y in the range
{-M/2+1,...,M/2} (M is even).

B. Variable Bandwidth DPLL Bit Synchronizer

In this section, the operation of the VBDPLL bit syn-
chronizer is described. A block diagram of the proposed
synchronizer is shown in Fig. 2. The synchronizer is a first
order loop with a variable loop gain K.

The selection of the specific values of K} is motivated by
the formulation of a DPLL bit synchronizer as a Kalman filter
[7] which estimates the constant process €. For a first order
DPLL the five Kalman filter equations can be combined into
two update equations: the timing update

€rv1 = €x + Ki(e — & + ny), ®

and the gain update

Kipr = /7 —5 ®
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Fig. 2. Variable bandwidth digital PLL sychronizer.

In (9), A = a2 /0?2 is the ratio of the process noise variance to
the measurement noise variance. A signal detector algorithm
is required to set 02 = 0 (A = 0) when signal is present
and 62 > 02 (Kr+1 ~ 1) when signal is absent. These gain
adjustment and signal detector algorithms can be combined
and represented in table form as shown in the sequel.

A quantized version of (8) is used by the synchronizer to
update the timing estimate, éx, according to

éx + q2[Krqi[{€ — & + Nk }moar Kpp|)AT (10)
ér + @[ Kryr| AT (11)

where g2[Krye] € {—% +1,..., 2L}, In (10) two quantiza-
tions are done. First the PD output is quantized by ¢; [-], second
the timing updates are done in quantized steps by g2{-]. Both
quantizers use a quantization step size of AT = T/M so
that ¢1[-] = q2[]. A more general timing update, including
nonlinear PD‘s and loop filters, can be written by replacing
g2[Kryx] with a general function z = f(yx, Kx) so that

€p+1 = €k + f(yk, K )AT = €, + 2 AT

€k+1

12)

To determine f(yg, K ), we assume a set of N discrete loop
gains K} are used. Each of the N possible gains Kj is
assigned an integer number K; € {0,...,N — 1} where
K; = N — 1 denotes the smallest possible gain (narrowest
bandwidth). In the sequel we refer to the /N discrete gains as
acquisition states since, in general, Kpp within one of these
acquisition states K; may also depend on yg, i.e., the PD may
be nonlinear. A typical table showing zx = f(yi, K&) for
M =32, N = 8 is shown in Table 1. This table is based on a
deterministic gain sequence K calculated using equation (9)
with signal present (A = 0). Tables for other values of M and
N are discussed in [12].

After the timing estimate update (12) is carried out, the gain
K, is updated. This can not be done using equation (9) directly
since it is not known apriori if signal is present. We use yz
to estimate the presence or absence of signal, so that the new
gain is a function of the present gain and the present PD output

(13)

Kry1 = 9(Kk, Yr)
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TABLE 1
z) AS A FUNCTION OF ACQUISITION STATE K} AND PD
OUTPUT ¥k. 2k FOR yx > 0 Is GIVEN BY SYMMETRY

K = 0.829 0453 0312 0238 0.192 0.161 0.139 0.122
yt Ki=0 1 2 3 4 5 6 7
-15 -13 -7 -5 -4 -3 -3 -2 2
-14 -2 -7 -5 -4 -3 2 -2 2
-13 -2 -6 -4 -3 -3 2 -2 2
-12 -11 -6 -4 -3 -2 -2 -2 2
-11 .10 -5 -4 -3 2 -2 -2 -1
-10 -9 -5 -3 -3 -2 2 -2 -1
9 -8 -5 -3 -2 -2 2 -1 -1
-8 -7 -4 -3 -2 -2 -1 -1 -1
-7 -7 -4 2 2 -2 -1 -1 -1
-6 -6 -3 2 2 -1 -1 -1 -1
-5 -5 -3 2 -1 -1 -1 -1 -1
-4 -4 -2 -2 -1 -1 -1 -1 -1
3 -3 -2 -1 -1 -1 -1 -1 -1
-2 -2 -1 -1 -1 -1 -1 -1 -1
-1 -2 -1 -1 -1 -1 -1 -1 -1
-0 -1 -1 -1 -1 -1 -1 -1 -1

TABLE II

K[, s A FuncTioN OF AcQUISITION STATE K AND PD

OUTPUT yi. K 1 FOR yg > 0 ARE GIVEN BY SYMMETRY
YL Kf=0 1 2 3 4 5 6 7
-15 0 0 0 0 1 2 3 4
-14 0 0 0 0 1 2 3 4
-13 0 0 0 0 1 2 3 4
-12 0 0 0 0 1 2 3 4
-11 0 0 0 1 2 3 4 5
-10 0 0 0 1 2 3 4 5
-9 0 0 0 1 2 3 4 5
-8 0 0 i 2 3 4 5 6
-7 0 0 1 2 3 4 5 6
-6 0 0 1 2 3 4 5 6
-5 0 1 2 3 4 5 6 7
-4 0 1 2 3 4 5 6 7
-3 0 1 2 3 4 5 6 7
-2 1 2 3 4 5 6 7 7
-1 1 2 3 4 5 6 7 7
-0 1 2 3 4 5 6 7 7

This gain update (13) can be defined as an acquisition state
update

Kiy =g (K¢ u) (14)

and represented in table form. The function g* is such that
the loop gain is increased for large |yx| (signal absent), so
that rapid acquisition can be achieved when the signal arrives.
When the signal arrives, the loop gain is reduced step-by-
step to a minimum value for good tracking. At the end of a
signal burst the gain increases so that the synchronizer can
acquire rapidly on the next signal burst. A typical example
for such a table is shown in Table II. The table determines
how fast the synchronizer lowers its bandwidth when signal is
present and how fast the bandwidth is increased again when a
data burst ends. A systematic discussion of different tables is
presented in [12]. Table II yields a good compromise between
fast acquisition and low steady state timing error.
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Equations (12) and (14) can be written as a set of Markov
chain equations

K? “(K, en,m
Okt1 = [ék}:;l] = H(®k,n) = {Z((K,’c":ékljnk,;)

The corresponding Markov model will be developed in the
next section.

The bit synchronizer operates by evaluation of the quantized
timing estimate update equation (12) and the quantized acqui-
sition state update equation (14) at each k. Since (12) and (14)
can be represented in table form, the bit synchronizer can be
implemented using lookup tables as illustrated in figure 2. The
discrete PD output ;. and the present acquisition state K} act
as indices to the acquisition state update table to determine the
next acquisition state K7, ;. In the implementation proposed
in [12] the y, and K are represented in binary notation,
and these bits are used to control address lines to a ROM
containing the stored values of z; and K, in Tables I and
Table II. Thus if the minimum access time of the ROM is
T/M, then data rates up to 1/7 are possible. For example, a
20 ns ROM can be used at the 1.544 Mbps T1 carrier rate.

The output of the timing update table z; is used to control
the numerically controlled oscillator (NCO) operating at a
frequency f = M/T. The parameter z; determines how many
cycles of this clock are deleted or added before the clock
frequency is divided by M to yield the reference clock. The
reference clock is used as reference input to the PD and it
determines the sampling instant at which the hard limited
received waveform is sampled to make a hard decision on
the bit polarity.

} 5)

III. FINITE STATE MARKOV MODEL

In this section, the finite state Markov model for the
VBDPLL is developed, and the timing error pmf’s versus
k are derived. The model in [14] is modified to include the
variable loop gain. First, a two dimensional Markov model is
defined, with Markov states determined by the synchronizer
timing error state and acquisition state. The state transition
probabilities are calculated in the Appendix as a function of the
signal-to-noise ratio, signaling waveform and phase detector
type, and are arranged into a single step state transition matrix
P for signal present or P, for signal absent. To obtain the
Markov state pmf (and thus the timing error and acquisition
pmf’s) versus k, the initial Markov state pmf is multiplied &
times by the state transition matrix P.

To begin the development of the Markov model, the discrete
timing update equation (12) can be combined with (5) and
written as a discrete timing error update equation

(16)

Due to the modulo T reduction of the quantized timing
error there are only M equally spaced discrete timing errors
possible. We denote these discrete timing errors by ®¢, @4, . . .,
Dpr_1 where —T/2 <Pp<P;<...< D < T/2. Thus

®; =(G+05)AT—-T/2 i=01,....M-1 (17)

where we assumed the optimum timing instant (e, = 0)
is centered between the two minimum timing error states

ert1 = {ex — 2kAT }moa T
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@rry2-1 and ®pg/5. The effect of a noncentered optimum
sampling instant can be analysed with a slight modification
of the theory [15], but this effect is not significant for large
M, e.g., if AT is small compared to the actual timing error
variances [16].

We assign each of the M possible discrete timing errors
a number e; € {0,1,...,M — 1}. The timing error update
equation (16) can be written

(18)

The overall system state (Markov state) sy = s(e}, K}) at
time k is determined by the combination of the acquisition
state K and the actual timing error state e;. A system state
number s € {0,..., MN — 1} is assigned by the rule

Sk :MK;-FG’Z

* — %
€r+1 = € ~ Rk-

(19)

Note that for purposes of analysis, the state of the synchronizer
is defined by the timing error ey and the acquisition state K.
The state of a finite state machine implementation is defined by
the present PD output ;. and the present acquisition state K}
since the synchronizer doesn‘t know the actual timing error ej.

We assume that the noise parts of successive PD outputs
yx are statistically independent. This assumption is not strictly
valid [12], but is reasonable for the signaling waveform (2)
and phase detector (7), since the analytical and simulation
results agree closely. For greater accuracy, a higher dimen-
sional Markov model can be used to include any correlation
between successive PD outputs [12]. With this independence
assumption, the system state sequence {sg,s1,...,Sk,...}
generated by equations (14) and (16) may be assumed to form
a Markov chain with M N states. The state s is the state of
the synchronizer at the beginning of a data burst.

For[,m € {0,1,...,(MN —1)}, let py,,, denote the single
step state transition probability, i.e. the probability that the
system presently in state [ will occupy state m after its next
transition. Thus

Lme{0,1,...,(MN) -1}

(20)
The py,, are a function of the signal to noise ratio at the
synchronizer input, the signal shape and the particular PD, and
are calculated in the Appendix. These transition probabilities
are conveniently arranged in a single step state transition
matrix

Pim = PT{8k+1 = 'm,|g)c = l}

Pojo Po|(MN=-1)

P= @20

P(MN-1)|0 P(MN-1)|(MN-1)

If the signal is absent, we define P,, in an analogous manner.
In general, the state transition matrices may be a function of
time k, but this is not explicitly indicated to simplify notation.
We call the probability that a certain state is occupied
after k state transitions a Markov state probability [17]. The
probability that state [ is occupied after % iterations

Pr{isy =1} = m . 22)
If we define the Markov state probability mass vector
Tk = [T0,ks T ks -y TAMN_1),k)s (23)
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then the state pmf after the (k + 1)st state transition is related
to the state pmf after the kth iteration by the recursion [17]

Th4+1 I’ll'}cP‘ (24)
This recursion can be used to calculate the state pmf . at
time k given the state transition probability matrix P and the
initial state pmf mo. For the described Markov chain with M N
states, it is possible to reach any state in exactly k steps for
k > MN. For a Markov chain with this property, ;. in (24)
will tend to a unique distribution as & tends to infinity [18].
We assume that the initial state pmf w at the beginning of a
data burst synchronizer is the steady state (k = oo) pmf with
signal absent.

The timing error pmf is defined by vi
ok Vi ks va—1,6] with Priex = ®} = vy =
Z,‘;o T(jM+i),k- The acquisition state pmf is defined by
W = [wU,k7w1,k7 . ..,wN_l,k] with PT{K,’: = ’L} = Wik —
Zﬁgl T(iM+j),k- The pmf’s vi and wy are marginal pmf’s
of the joint pmf 7.

IV. SYNCHRONIZER PERFORMANCE CHARACTERISTICS

This section contains the derivation of the synchronizer
performance characteristics using the Markov state pmf, m,
obtained in Section III. The timing error variance and bit error
rate as a function of k are obtained in Section IV-A. The
distribution of acquisition time is derived in Section IV-B,
followed by the distribution of first bit slip time in Section
Iv-C.

A. RMS Phase Jitter and Bit Error Performance

2

The timing error variance o,

from the timing error pmf vy.

The bit error probability P.(k) as a function of the preamble
bit number k can be used to determine the required preamble
length for a given application. The data detector takes samples
of the hard limited signal at ¢ = kT + € as an estimate a;, for
the bit polarity ax. The bit error probability P. conditioned on
the timing error ey, is given by

> org(®: — kT))

On

can be calculated directly

Peex = ®;) = Q( (25)

where
Q(z) = o e dy. (26)

For the pulse shape of (2) and a 10101... preamble we get

P,
C- cos—i—ql)

n

Pe(ex = ®i) = Q( @7

The timing error, P.(ex = ®;), can be averaged over the
discrete timing error pmf, vy, of the synchronizer to obtain
P.(k).
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Fig. 3. Markov state diagram to calculate the acquisition time pmf. The
timing error ej is modulo T reduced. Minimum error states are absorbing
states.

B. Acquisition Time Distribution

We define the acquisition time 754 as the time (normalized
by the bit duration 7") to reach one of the minimum timing
error states (P a _;, ® ) for the first time. In this section, the
discrete distribution Pr(T,.q < k) of the acquisition time is
found.

We denote Uy, 4, as the probability that a minimum timing
error state is reached after & state transitions starting from
the initial Markov state so = [. Let the set {j} contain the
state numbers of all states s which represent one of the two
minimum timing error states ®57/3_; and ®y;/2 (see Fig. 3).

The probability Ug,,=;that a minimum timing error state is
reached in zero transitions is the probability of being in that
state initially, thus
1 for led{j}

- {0 for 1¢{j}
Furthermore, if the initial timing error state eg is a minimum
error state, then the probability is zero that the acquisition
time is larger than zero, thus

Ubjsp=t (28)

Ugjsg=t = 0if, 1 € {5}and k > 0. 29)

We assume now that the initial state so is not a minimum
error state and that the first transition is from state sq = !
1o 81 m. The conditional probability Uyjsy=1s,=m that a
minimum error state is reached in one transition given the first
transition is from sgp = [ to s; = m is equal to the probability
Upjsy=m that zero transitions are required from state so = m
to a minimum error state. The probabilities Uyjs,—; can be
found by averaging over the state transition probabilities

MN-1
E pllmU1|30=L31 =m

m=0
MN-1

Z pl|mU0|so=m

m=0

Ul]sg:l
(30)
L¢{j} k20

This argument can be repeated for the probabilities of reaching

a minimum error state in 2,3, ... transitions. Thus,
Ug41)59=1 = 0 le{j} k>0
MN-1
. (31)
Uk+1\80=l = Z pllmUklsgzm l ¢ {.]} k>0
m=0

This iteration is started with the initial conditions (28).
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Fig. 4. Markov state diagram to calculate bit slip pmf. The timing error ey
is not modulo T reduced. All timing errors larger that 7'/2 are represented
by absorbing timing error states.

®)

Fig. 5. Discrete acquisition state density and discrete timing error density
for E,/Np = 10 dB as a function of the preamble bit number k. M = 32,
N = 8.

The probabilities /!Ug,,—i/! are conditioned on the ini-
tial Markov state so = I, ie., they are joint probabili-
ties conditioned on initial timing error eg = ®; and ini-
tial acquisition state. The marginal probabilities Ugjey=s, =
Z,";gl Ui|so=iTini4i,0 are the pmf of the acquisition time
Tacq and it is now straightforward to find the discrete dis-
tribution and the mean of T,., conditioned on ey = ®,. The
unconditional pmf is Uy = Y170 " Urjeg=, Vit

The acquisition time may be defined in slightly different
ways. Some authors [2] define the acquisition time as the time
before the timing error stays smaller than a defined threshold
for longer than a given lock detection time 77;. The mean and
the distribution of the acquisition time defined in this way can
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easily be calculated using the described methods if the Markov
model is modified by adding 7;x/T additional timing error
states for each minimum error state [12]. The acquisition time
can also be defined as the time to reach one of the minimum
timing error states and simultaneously also the minimum gain
state K;; = N — 1.

The method proposed by Feller [18] to determine the mean
duration of a game in the classical "gambler’s ruin" problem
[16], [15] was used [12] to confirm the mean values obtained
above.

C. First Bit Slip Time Distribution

A zero crossing based bit synchronizer in steady state
cannot distinguish between timing errors differing by multiple
integers of a bit duration T'. Thus for all the preceding analysis
it was assumed that the timing error ey, is modulo 7" reduced.
To analyze the bit slip performance of the synchronizer,
we assume that transitions to timing error states outside the
interval (—T/2,T/2] are treated as transitions to an error state
@ (bit slip state, see figure 4). Also, since we are only
interested in the time to the first bit slip, we make the bit
slip state an absorbing state. The Markov state diagram with
the additional bit slip states is shown in Fig. 4. There are now
(M+1)N Markov states. The state transition probabilities py|,
have to be recalculated using this state transition diagram. The
pmf of the bit slip time can then be calculated using the same
procedure as for the acquisition time pmf in Section IV-B.

V. NUMERICAL RESULTS

In this section we present numerical results obtained with
the analysis method presented in the previous sections for the
phase detector and signaling waveform described in Section
H. The results are verified by computer simulation. A sampled
cosine wave with M samples per half period 7 has been
combined with samples of filtered AWGN to generate the
input signal to the VBDPLL. The noise filter was a third-order
Butterworth filter with cutoff frequency 1/27. We assume
timing update Table I and acquisition state update Table II.

To calculate the synchronizer performance, we first
must calculate P, P,,m; as outlined in Section III and
the Appendix.

The acquisition state density wyand the timing error density
vy are obtained from @ and are shown in Figs. 5 and 6 as a
function of the preamble bit number k. The probability that the
synchronizer is in a narrow acquisition state and a small timing
error state increases with k, thus illustrating how acquisition
is achieved.

The timing error distributions v have been used to calculate
the rms timing error as a function of the preamble bit number
k. The result is shown in Fig. 7 for different signal-to-noise
ratios. For comparison, rms timing error curves are also shown
in Fig. 7 for a fixed step size synchronizer, i.e., a synchronizer
where z; € {41,—1}. The improvement of the adaptive
synchronizer is obvious. The fixed step size synchronizer
reaches steady state only after more than 30 bits, whereas the
adaptive synchronizer reaches the same steady state rms timing
error after less than 5 bits. We note that the fixed step size
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Fig. 6. Discrete acquisition state density and discrete timing error density
for E;,/No = 10dB as a function of the preamble bit number k. M = 32,
N = 8.
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Fig. 7. RMS timing error as a function of the preamble bit number k.

synchronizer is identical to a synchronizer proposed by Payzin
[14] except for a different phase detector. The steady-state
values shown in Fig. 7 are identical to the values published
in [14].

The analytical results are verified by computer simulation
and the agreement between simulation and analysis is good
except for low signal-to-noise ratios (Ey/No < 6dB) where
the assumptions made in calculating the state transition prob-
abilities are no longer accurate.

When comparing the required computing time for the nu-
merical method and the simulation method, the advantage of
the numerical method becomes obvious. To simulate 10* trials
of a 40 bit preamble with M = 32 and 8 acquisition states we
required 2385 s of CPU time on a SUN4/60M with a 20 MHz
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Fig. 10. pmf of the acquisition time for different Ey, /No assuming uniform
initial timing error.

SPARC CPU. Using the numerical method the same result
could be obtained using 4.9 s of CPU time.

The bit error rate of a single sample detector has been
calculated using (27) and averaging over the timing error pmf
vy, . The result is shown in Fig. 8. Again the improvement of
the adaptive synchronizer is obvious.

The mean time to acquire Tacq(eo = @;) as a function of
the initial timing error eq is shown in Fig. 9. It can be seen
that the mean time to acquire is much smaller for the adaptive
synchronizer than for the fixed step size synchronizer. For the
adaptive (VBDPLL) synchronizer the mean time to acquire is
almost independent of the initial timing error ey since for large
timing errors one timing correction is enough to reach a small
timing error due to the large loop gain during acquisition.

The acquisition time pmf’s in Fig. 10 are used to calculate
the probabilities of not acquiring after & bits as shown in Fig.
11. It was assumed that the initial Markov state distribution,
@ is the steady state distribution in noise, i.e., the initial
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timing error is uniformly distributed. These distributions can
be used to determine the required preamble length for a
required probability of acquisition before data starts. As can
be seen from the figures, the acquisition time and hence
the required preamble length is significantly shorter for the
adaptive synchronizer. Hang-up effects are insignificant since
after 35 bits the probability of not acquiring is ~ 10~8 for a
signal-to-noise ratio of 12 dB (Fig. 11). When using the pmf’s
of Fig. 10 to calculate the distributions of Fig. 11 very small
probabilities have to be added to large probabilities (close to
one).

VI. CONCLUSIONS

This paper has presented two main ideas: a variable loop
gain DPLL bit synchronizer for burst mode data, and a perfor-
mance analysis using Markov chain techniques which yields
numerical results in terms of state transition probabilities.
It is demonstrated how a nonuniform sampling closed loop
DPLL bit synchronizer with variable loop gains can achieve
the benefits of both rapid acquisition and reliable tracking
simultaneously. The VBDPLL has a large loop gain at the
beginning of a signal for rapid acquisition, which decreases
as long as the signal is present for reliable tracking, and
increases again when the signal disappears to be ready for
rapid acquisition at the beginning of the next data burst. The
bit synchronizer with a discrete number of possible loop gains
(acquisition states) and timing error states is implemented as a
finite state machine, with states defined by the quantized timing
error and the loop gain. By defining a two-dimensional Markov
chain, complete numerical solutions for the performance of the
finite state machine VBDPLL bit synchronizer are derived,
including the timing error pmf as a function of the preamble
bit number k, the distribution of acquisition time and the
distribution of the time to first bit slip. The results can also
be applied directly to timing error detectors other than the
zero-crossing phase detector considered here, provided that the
noise parts of the timing error samples are independent from
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bit to bit. If not, additional states can be added. Future work
includes a generalization of this analysis by adding additional
states for other signaling waveforms, including partial response
signaling, and higher order loops. [12). A generalization for
the case of frequency offsets is outlined in [12].

The Markov model is a powerful tool which makes it
possible to analyse a discrete closed loop bit synchronizer in
detail.

APPENDIX
DERIVATION OF STATE TRANSITION PROBABILITIES

In this Appendix we describe how to calculate the elements
P1|m Of the state transition matrix P. In general these probabil-
ities depend on the signaling waveform, signal-to-noise ratio
and phase detector type. To simplify the analysis, we make
the assumptions described in Section II and further assume
that every zero crossing is due to a bit transition, there are no
additional zero crossings due to noise, and the probability is
zero that the zero crossing displacement due to noise is greater
than £7°/2. These assumptions will fail if the noise #(¢) is not
sufficiently bandlimited and/or the signal to noise ratio is too
low to assume a single zero crossing per bit interval [19].

We first find the discrete pmf of the zero crossing displace-
ment 7, due to noise, use this to find the discrete pmf of the
PD output y;, for each possible timing error, from which the
state transition probabilities are found.

We define the discrete zero crossing pmf

ui = Pr{ZC in (®;,®;;1]}

D
2/ fa (ne)dny i€ {0,..., M ~ 1},

o;

(32)

where fy,, (nk) is the density of the zero crossing displacement
M.

For the data pulse shape given by (2) and a preamble data
pattern, fn, (nx) is given by the modulo 7 reduced zero
crossing density of a sine wave in noise. A high signal-to-
noise ratio approximation of f,,, (nx) is given by (33) below
[12], [20].

The state transition probabilities can be calculated in terms
of the u; using the algorithm in Table III

If the signal is absent, then the state transition probabilities
may be found in exactly the same way, except that u; = 1 /M
for all ¢. Note that the time between state transitions is a
random variable. With signal absent and AWGN filtered with
a third-order Butterworth filter with 3 dB cutoff 1/27 , the
mean time between state transitions was found by simulation
to be 0.7T.

1
exp < —
V2rno, P {

P)
202

fnk (nk) =

C?sin’(ngr/T) } Cr

K .
> cos (Tnk) if |ng| <T/2
(33)

if |ngl > T/2
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TABLE III
ALGORITHM TO CALCULATE STATE TRANSITION PROBABILITIES

FOR s, = 0 TO (MN — 1)

Kr=|%
ey = Sk — Z\/IK}:
FORy: = (=¥ + D TO &

2 = f(yr, Ki)
RZ-H =e; — zk
K}:+1 = g*(ykal\’[:)
skon =Ko M +ely,
Psplspyr = Y{ef—vitmodns
NEXT yr
NEXT s
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