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A New Multistage Detector For Synchronous CDMA Communications
' Zhen-Liang Shi, Weixiu Du, and Peter F. Driessen

Abstract—In this paper, we develop a new multistage detector
to approach the optimal solution of the detection problem in a
. synchronous code division multiple access (CDMA) system. The
transformation modifies the diagonal elements of the Hessian
matrix of the quadratic likelihood function and brings the contin-
uous minimum of the transformed function as close to the optimal
solution as possible. The computational complexity is essentially
linear with the number of users, except that a few computations
of a quadratic function aré needed.

I. INTRODUCTION

N CODE-DIVISION multiple-access (CDMA) systems, the
conventional detector is a filter matched to the spreading
code of the desired user. The conventional detector suffers
_from the near—far effect due to the disparity in the received
powers of users near to and far from the receiver. The optimal
multiuser detector which eliminates the near-far effect, unfor-
tunately, has an exponential computational complexity with the
number of users. The linear decorrelating detector proposed by
Schneider in [2] was proved to be optimal near—far resistant
[3]. This detector is formulated without knowledge of the
users’ energies. When energies of all the users are known
or can be estimated, the optimal detector will significantly
outperform the decorrelating detector of [2].

A nonlinear sub-optimal detector called muitistage detector
was developed by Varanasi and Aazhang (Varanasi multistage
detector) for the case of known user energies [4]. For this
detector, the original K -dimensional integer minimization is
approximated by K unidimensional integer minimizations.
A significant improvement over the decorrelator of [2] is
obtained by this detector of [4] with computational com-
plexity growing linearly with the number of users. However,
in many cases, the final decisions from the unidimensional
optimizations cannot converge to the optimal solution.

In this paper, a new nonlinear multistage approach is
proposed. Better performance can be obtained by the new
scheme with only a slight increase in the computational
complexity compared to the Varanasi detector.

Section II will review the optimal detector. The basic trans-
formations into an equivalent zero—one optimization problem
are presented in Section III. A continuous approach for the
optimal zero—one solution is presented in Section I'V, followed
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by two algorithms developed from this approach in Section V.
Section VI will present the numerical results.

II. OPTIMAL DETECTOR

For a K-user CDMA system, the received signal at a
receiver in a symbol duration can be written in the discrete
signal form as

r=5Tb+n

where b = [by by -+ bg]|T € {—1,1}% contains all the users’
bits for the symbol, i.e., by € {—1, 1} represents the kth user’s
bit.S:[31 89 -
the kth user’s spreading code vector. m is the number of chips
in a symbol with m > K to ensure that the spreading codes
are linearly independent. n = [n; ng - -ny,)T € R s a
sample vector from the additive white Gaussian noise (AWGN)
with zero mean and a power spectral density (PSD) Np.

The optimal multiuser detector sclect§ the most likely (max-
imum likelihood) hypothesis b = (by,---,bx) given the
received signal r which corresponds to selecting the noise
realization with minimum energy [3], i.e.,

b=arg min lIr — STb|% -
@

where the vector y = Sr, which is a vector of sufficient
statistics for b, represents K decisions from K conventional
receivers, and H = SST is a K x K positive definite
matrix. The above problem is known to be nondeterministic
polynomial time hard (NP-hard) [3]. ‘

III. BASIC TRANSFORMATIONS

Two basic transformations are presented in this seCtion.
First, we transfer the problem of (2) into an equivalent
zero—one optimization problem, in which zero and one in
the transferred function correspond to —1 and 1, respectively,
in the original problem. Letting z = (b + ¢)/2, where K-

dimensional vector e = [1 1 -+ 1]7 the-ith element of z will -

be z; =0 for b; = —1 and 2; = 1 for b; = 1. It is easy to
verify that the minimization problem of (2) is equivalent to
minimize f(z) = %wTQa} +cTz
subject to z € {0, 1}%
minimize f5(b) = 67 Hb — yTb + LeTHe — yTe
subject to b € {—1,1}% '

where ¢ = —2(He + y) and Q = 4H, which is called the
Hessian matrix [1]. ‘

Furthermore, for any given diagonal matrix & =
diag{d1 o2 ¢x} and a vector made up of the
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sk)T € REX™ with s, € R™*! denoting
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diagonal elements ¢ = [¢1 ¢ -+ Px]7, it can be shown

that the problem

minimize f(z) = 327 Qz + 'z
subject to z € {0, 1} X
minimize f(z) = 127Qz + Tz — 13 zi(z; — 1)¢;
subject to z € {0,1}¥
@

is equivalent to (3), where Q = Q — ® and ¢ = c + 34
The f(z) in (4) is called the transformed function of f(z)
in (3). The equivalence holds because the transformation does
not affect the function values at any of the zero—one solutions.
Here we call a solution constrained to be a member of {0, 1}
a zero—one solution. Noted that the continuous minimum of
the transformed quadratic function is necessarily changed. The
continuous minimization is unconstrained, with the solution
given by Q¢ for (3) and § '€ for (4).

IV. CONTINUOUS APPROACH TO THE ZERO-ONE SOLUTION

Carter [1] proposed an iterative method to find a basic
transformation, such that the unconstrained continuous min-
imum solution of the transformed quadratic function can
draw nearer to the zero—one minimum solution after each
iteration. The idea is based on the fact that the transformed
continuous function minimum f(%) is upper bounded by the
function value f(z!), where £ and x' are the solutions for the
continuous and zero-one minima, provided that Q is positive
definite. If the two minima are equal, the continuous solution
will coincide with the zero—one solution. As the continuous
minimum f(&) closely approaches to the zero-one minimum
f(x1), the continuous solution # should approach to z!. The
question raised here is how to find a transformation such that
the continuous minimum function value increases as quickly
as possible. The following theorem is the answer.

Theorem: Let % be the continuous minimum solution of
the function f in (3). Suppose the ¢th diagonal element of
Q is decreased by ¢;, then, the continuous minimum of the
transformed function will change by [1]

[ (G-%)® 1
Af~3{@%;;5+z] )

where g;; is the sth diagonal element of Q1.

Using 7 = 1,2, - - - to denote the time index of the modifica-
tion with Q(0) as the original matrix from (3), the parameters
for the jth modified system become

Q) =Q — 1) — piese] O]
QU™ =QU -1 ~ 1967 ¢
c(j) =c(j ~ 1) + ies ®)
#F)=2@G-1)+r )

where g; is the ith column of Q~1(j — 1), and the column
vector e; has a “one” in the ith position and zeros elsewhere.
7 and r are computed by T = ¢;/(¢igii — 1) and r =
79i(3—2i(j—1)). The following corollary gives the condition
for the new Hessian Q(j) to be positive definite.

‘construct a unique ¢* = {¢% &% -
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Corollary: In the theorem above, the new Hessian matrix
Q(j) will always be positive definite provided ¢; is less than
1/9ii.

One needs to maximize A f while also ensuring that A f is
positive. The proof of the corollary is in [1]. By maximizing
the A f with respect to ¢;, the function minimum f(2(4)) will
approach to f(z7) at the fastest rate. The resulting values of
¢; and Af, also from [1], are given by

285 = 1)/ g4, for #;(j —1) < 3
@’{%1—@u_nvw,ﬁx@u—n>§ (19

_ [ 25— 1)?/(294), for #;(j —1) < %
Af_{a—@u—nﬁﬂmm,ﬁx@@—n>§(“)

and the 7th component of the new function minimum will be

0, for ﬁ:i(j—l)<%
i(j)=q 1, for@(j-1)>3 (12)
1/2, for#(j—1) =3.

The new function is shown to always be positive definite in [1].

V.. MULTISTAGE DETECTOR

Based on the theorem in the last section, a new multistage
detection algorithm is proposed.
MD algorithm: Multistage Detection
1) Fori =1 to K, let
t:{&o—m if &:(j ~1) < 5
Tl -&G ), &G -1)>3

2) Find the index p such that |t,| = max[<, |t;], ie., &, is
the component of the current minimum which is furthest
away from a zero—one value.

3) Compute ¢, by (10) and compute Q(5),Q~'(5),c(5)
and Z(j) by (6)-(9), respectively.

4) Compute f(27(4)). 2#7(j) is the quantized zero—one
point from Z(j) at the current stage.

Compare the f(27(j)) with the smallest one obtained at
previous stages and keep the smallest one.
5) 7 = j+ 1; Repeat from 1) until j > M.
For each stage, the dominant operations are the computation
of f(#1(j)) and the update of Q. For a M-stage detector,
the algorithm needs M computations of (7) and at most M
computations of f(#). M is independent of K. For most
cases, the algorithm will quickly converge to the 2! in three or
four stages. However, there are still some cases for which the
algorithm cannot bring the continuous minima close enough
to the z!. For these cases, the values of the continuous
minimum % from each iteration of the algorithm will oscillate
among a few points. Furthermore, the value of the index p,
as determined by the second step of the MD algorithm, will
also oscillate among a few fixed values after each iteration
of the algorithm. The elements corresponding to these fixed
values of the index are deemed the most unstable elements.
For K < 10, p‘often takes two fixed positions in the vector Z.

An observation in [5] can be used to explain why the
algorithm does not always converge. In [5], it is shown
that for any z* = {z} x5 --- z%} € {0,1}¥, we can
%} € RX, such that
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TABLE 1
RESULTS FOR THE EXAMPLE (j: NUMBER OF STAGES)

J 2 /(%)
0 (045 002 1.79 1.06 -0.21) -33.86
1 (048 0.55 1.00 0.27 0.58) -30.86
2 (0.00 0.25 1.15 0.65 0.13) -30.11
3 (-0.44 -0.03 1.28 1.00 -0.28) -30.09
4 (000 0.25 1.15 0.65 0.13) -30.08
5 (-0.43 -0.03 1.28 1.00 -0.28) -30.07
z* = —(Q)~1e*, where Q" = Q— ®*, and " = c+39*. ¢*
is given by

¢r=202z; - )|+ > gy (13)

j€nh(z*)

where I (z )— {i|z} = 1}. We have found that the necessary

condition for Q to be positive semidefinite (psd) is z* = 1.
The MD algorithm will converge if and only if the Q for

z* = z! is psd. Whether or not @ > 0 for z* = 2!
will be sensitive to the noise components of y and therefore
the noise components of ¢. Whether Q > 0 for z* = z!

will also depend on the structure of @ or the quality of the
cross-correlations of PN codes.

In the rest of this section, a modified algonthm is proposed
to obtain successful convergence when Q for the zero—one
minimum s indefinite. The objective is to single out some
elements of x which cause the @* to be indefinite. Such
elements may be excluded from the consideration in the
algorithm, and the Q for the reduced problem will often
become positive definite. Then the problem can be solved
by the continuous approach again. To find such elements, we
present the following example for a five-user CDMA system.

Example: For the problem defined by (3), let

5048 —5.11 15.32 15.32 -—25.53
=511 2530 -3.61 1084 -361
Q=|1532 —-361 2530 -3.61 —3.61
15.32 10.84 —-3.61 2530 -3.61
—-25.53 —3.61 —3.61 ~3.61 2530
and '
c=[-26.18 -8.69 -3520 -14.54 4.18]7
then 5* computed from (13) with the optimal zero—one solu-
tion z* = [11.101]is
=[17.97 856 -3.63 —879 —6.55]7
and
32.50 —5.11 15.32 15.32 —25.53
. =511 16.74 —-3.61 10.84 -3.61
Q =1]1532 —361 2893 -3.61 —3.61
1532 1084 —-3.61 34.08 -—3.61
-25.53 —-3.61 -361 -361 31.85

which is indefinite with the eigenvalues as 40.43; 15.11; 24.19;
—3.09; 67.46. The results for five iterations by Algorithm 1
are illustrated in Table L
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Fig. 1. BER of user one for a five-user system. The largest cross-correlation
is 5/7, SNR (1) = 8 dB, M = 4,N = 3.
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Fig. 2. BER of user one for a ten-user system. The largest cross-correlation
is 7/15, SNR(1) = 8 dB, M = 4,N = 3.

The algorithm is not convergent, because #, as the iteration
goes on, will jump back and forth around two points [0.00
0.25 1.15 0.65 0.13] and [—0.43; —0.03; 1.28; 1.00; —0.28].
The elements one and four are the most unstable ones. Often,
the correct decisions for the most unstable elements %, are the
opposites of their quantized values, i.e., the correct decisions
are one, if £, = 0 and zero, if 2, = 1. Accordingly, we
propose a modified MD algonthm to increase the frequency
of convergence when Q for 2! is indefinite.

Modified Multistage Detection (MMD) Algorithm:

1) Run the MD algorithm for M stages.

2) Find the two most unstable elements 7.

3) For one of the most unstable elements, substitute %, of
the original function f with the opposite of the quantized
value of £,,. The new function f has K — 1 dimensions.

4) Run'the MD algorithm for the reduced function for N
stages, choose the best result for Z,, from the comparison
with the one obtained before.
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5) For the other most unstable element, repeat 3) and 4).

This heuristic method is shown to be very effective for this
particular communication problem.

VI. NUMERICAL RESULTS

In this section, bit-error rates (BER’s) of the two algorithms
are obtained by simulations. For comparison, simulation re-
sults from the Varanasi multistage algorithm [4], conventional,
decorrelating, and optimal detectors are also presented.

First, we consider a five-user CDMA system. We use
the same codes as were used in Fig. 4 of [4]. The largest
correlation coefficient among the spreading codes is 5/7. Fig. 1
shows the BER of the first user with its SNR; = 8 dB,
versus the ratio of the user’s signal strength to the strength
of the other four signals. The improvement over all the
other schemes by the new multistage detectors can be seen
from this figure. Note that the MMD algorithm achieves near
optimal performance. Fig. 2 illustrates the same performance
comparison for a ten-user system. Gold sequence of length 15
are used with the largest -correlation coefficient of 7/15. As
the user cross-correlation values decrease, the performance of
both the decorrelating detector and the conventional detector
improve, but the modified multistage detector still achieves
near optimal performance.

It should be noted that the number of stages in the two
algorithms is insensitive to the number of users in the system,
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thus the computational complexity of the algorithms will not
increase much as the number of users goes up.

VII. CONCLUSION

This paper proposes two new multistage detectors for syn-
chronous CDMA systems. The new detectors are able to
achieve better performance than that of the Varanasi multi-
stage detector, especially in the case of high cross-correlation
between the spreading codes of any pair of distinct users.
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