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Abstract— We present a flexible and inexpensive system for an-
alyzing gesture data in a computer. Several basic data reductions
are introduced, and the tradeoff between latency and reliability
is discussed. An example of the application of this technology
to musical performance is presented via the example of the
radio drum, a musical controller that produces eight channels of
gestural data. The advantages of analyzing this data stream in
software are exposed, and future applications of the technology
are presented.

I. I NTRODUCTION

Technologically adept artists explore forms of expression
impossible with historically successful media such as canvas,
film, tape or presentations of theatre and dance. For many
years digital technology has been used by musicians to shape
and synthesize sound, and indeed the considerable power of to-
day’s microprocessors, plummeting cost of mass data storage,
and flexible scope of audio software has made the computer an
indispensable tool. Unfortunately, using the personal computer
in a real-time music performance can be problematic. If what
is desired is to actuallyplay the machine in the sense of
a traditional instrument, the interfaces currently available to
control the sound synthesis are unsatisfactory. For a performer
to be able to use our technology in a concert performance we
demand that our interface have the following characteristics:

Low Latency A very small delay between gesture and
resulting sound is necessary to produce the kind of rapid sonic
feedback that a musician receives from an acoustic instrument.
We strive to satisfy the 10ms low latency criterion established
for satisfactory reactive performance systems[1].

Dynamic Range Musicians should not be quantized. Al-
though the traditional pianist is restricted to a discrete domain
of pitches, she enjoys a continuous range of velocity when
hitting the keys. We want to design instruments that make it
possible to express the full range of human emotion.

Reliability A performer must have confidence in her instru-
ment. The instrument must not fail in the middle of a concert
- no more often than a guitar string would snap, or a drum
stick break - and it must respond predictably for the performer
to be able to develop a deep virtuosity.

II. CREATING A FLOW OF MEANINGLESSNUMBERS

Most interfaces for electronic music, such as a MIDI key-
board, consist of analog circuitry to sense the gesture, logic
to decode the gesture into meaningful musical events, and
then hardware ports that shuttle this reduced event informa-
tion into the computer. InCommunicating with Meaningless

Fig. 1. Block Diagram of Amplitude Modulation Scheme

Numbers[2] David Zicarelli points out that the performer-
instrument communication is better characterized by a continu-
ous engagement of control rather than by a few discrete events.
Zicarelli argues that to find better methods of controlling
sound synthesis we ought to be transmitting individual data
samples that are stripped of all musical context. The stream
of these ”meaningless” numbers would then be analyzed and
interpreted in software.

Accordingly, what we propose is in many ways a less
complex approach to communication. Instead of moving data
digitally, multiple signals from the gestural interface are ampli-
tude modulated and multiplexed into the stereo sound input of
an inexpensive consumer audio card: one half of the stereo
input samples the modulated gesture signals and the other
samples the carriers, as in Figure 1. Amplitude modulation is
necessary because sound cards are AC coupled and do not pass
very low frequency signals (below 20 Hz, for example). Since
the frequency of muscular contraction has an upper bound of
450 Hz [3] the 22 kHz of standard audio bandwidth provides
space to multiplex many channels of gesture data.

Demodulation, analysis and musical mapping of the gesture
signals is done in the type of cross-platform modular graphical
programming software that new media artists use in a perfor-
mance context, such as Cycling ’74’s Max/MSP/Jitter[4] or
Miller Puckette’s Pure Data[5]. Figure 2 shows an example
of a four-channel demodulation patch in Max/MSP. Bandpass
filters separate the multiplexed signals, each modulated gesture
signal is multiplied by its corresponding carrier signal, and
a fourth-order IIR lowpass filter rejects the high-frequency
carrier components. Testing indicates that many of today’s off
the shelf audio cards can move sound into and back out of a
computer in less than 300 samples, or roughly 6.8 milliseconds
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Fig. 2. Four Channel Max/MSP Demodulation Patch

at a sampling rate of 44.1kHz. The impulse response of the
IIR filter indicates that it adds approximately 75 samples of
group latency, bringing the total to 8.5 ms.

Importing the gesture data through the audio input provides
several advantages:

Hardware Simplicity We communicate strictly in the ana-
log domain and have no digital circuitry to engineer into our
interface. We take advantage of the hundreds of development
hours that the audio card manufacturers have spent creating
reliable A/D drivers. As the specifications of inexpensive
sound input devices improve - less latency, higher sampling
rates and larger bit depth - so does the potential fidelity and
responsiveness of our system.

Software Simplicity Because gestures are processed in the
same signal chain that renders the audio there is no need for
a separate software layer to buffer the data and inject it into
the audio signal chain at the appropriate time. Inter-process
jitter is eliminated and creation of a fluid, responsive software
environment is straightforward.

Flexibility Moving the analysis algorithms from hardware
to software can lead to design insight that wouldn’t otherwise
be gained (see [2]). Complete control freedom is afforded
because no decisions have been made on the artist’s behalf.

The main drawback to this type of data-processing scheme
is an increase in computational load. Fortunately consumer-
grade computers now have the horsepower to manage this
kind of processing as a small percentage of their total ability.
Additionally, opportunities to make the programming efficient
by exploiting properties of parallelism and oversampling are
abundant in the algorithm design, but because the compu-
tational power of accessible computers continues to grow
at a staggering pace it is felt that these considerations are
secondary in importance.

III. M USICALLY USEFUL REDUCTION OF THEGESTURE

DATA

The presence of noise means that we can only ever deal
with the ”truth” about these gesture signals in a statistical

sense. All processing techniques that can be used to reduce the
effect of noise in a signal must take into account the value of
multiple samples, and therefore it is unavoidable that precision
in measurement or detection of a signal can only be achieved
at the cost of delay over and above the latent characteristics
of the computer’s sound input device.

Position The most straightforward way to reduce the effect
of noise in a signal is to simply take the mean ofm successive
samples: assuming that the actual value of the signal is
constant - a fair assumption with our techniques, since our
gesture signal is hugely oversampled - the variance in the
signal has an inverse relationship withm, whereas the latency
inherent in the evaluation increases linearly asm grows larger.
The longer we are able to delay our estimation, the closer our
determination is likely to be to the actual position.

Derivatives A velocity signal can be estimated from a
position signal by subtracting the value of successive samples.
Similarly, acceleration can be obtained by calculating the
difference between successive estimations of velocity, and
higher moments may be estimated by repeating the process.
Note however that each transformation to the next higher
derivative doubles the variance in the signal due to noise, and
so can require considerable smoothing (and hence delay) to
achieve reliable results.

Thresholding and Regions Starting from the one-
dimensional case, a threshold is some valuet that we wish to
compare to the signal: is our signal greater than or less than
t? It is unfortunately impossible to simultaneously maximize
the probability of detecting when the signal is above the
threshold and minimize the probability of mistaking noise for
signal above the threshold; the best we can do is keep the so-
called false-alarm probabilitypfa at a tolerable level. Given
an estimation of a stick’s position, the variance in the statistic
and some assumptions about the distribution of noise (that
it is white Gaussian, say) we can calculate a buffer amount
b such that if the estimation of the position is abovet + b
the probability of the stick’s actual position not being above
t is less thanpfa. Once again the tradeoff between latency
and accuracy is evident: the more samples we consider in our
estimation, the less the variance and therefore the smallerb has
to be to ensure a probability of failure less thanpfa. Since
joint probabilities become products of individual probabilities
for independent events, this one-dimensional analysis can
be extended to segmented regions and multiple dimensions
simply by applying similar restrictions for each threshold value
and dimension and multiplying the boolean results.

PulsesIf we want to identify a pulse or known amplitude
variation in the signal, the algorithm which yields maximum
sensitivity is the matched filter. The expected pulse shape can
be sampled atm pointss1...sm to be used as the coefficients
of an FIR filter, and the peaks of this filter’s output will
correspond to the times of maximum likelihood that the pulse
has been input.

Since the probability of a false alarm due to noisePn cannot
be minimized with the same algorithm that maximizes the
probability of detecting a valid pulsePd, one must maximize
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Pd with Pn set to a tolerable level. The optimum Neyman-
Pearson processor consists of comparing the output of our
matched filtery = Σm

j=1sjxj to a threshold leveld determined
by our choice ofPn. Under the assumption of Gaussian noise
with varianceσ2

n, very small values ofPn have approximately
the following relation tod[6]:
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σn is the standard deviation of

the noise in the output of the matched filter. ForPn = 10−10,
which at a sampling rate of 44.1 kHz corresponds to a false
alarm once every 63 hours,d = 6.35σy. We can then express
the detectability of a pulse as a function of the effective signal-
to-noise ratio, given by the ratio of its energyE to the noise
spectral densityn0:
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Parallel Operations Imagine that we wish to identify a
multi-part gesture that requires input from more than one
interpretive process: for instance, we may wish to trigger a
noise when a sensor’s velocity exceeds a certain value but only
while a different sensor is in a particular region. The different
processes required to extract the different features each has its
own effective latency. Care must be taken when features are
extracted in parallel to ensure that the latencies inherent in the
interpretive processing are of equal length, otherwise the logic
won’t be aligned in time. If a particular reliability or accuracy
goal is sought a probability analysis of each individual event
must be undertaken.

IV. T HE RADIO DRUM

As a test case for this technology we consider the radio
drum, an instrument created at Bell Labs[7]. The two sticks of
the drum are electrically driven with a radio frequency voltage
source, and the division of displacement current between the
four corners of the flat sensor surface determines the eight
output signal strengths. These signals are then transmitted to
circuitry that amplitude modulates and sums the signals in
the manner of Figure 1, after which they are passed into the
computer through the sound card as a stereo pair.

The most straightforward information to extract from the
signals sent by the radio drum is the three-dimensional location
of a sensor. Through the transformations outlined in [7] the
eight channels of data are reduced to two three-channel groups
representing thex,y, andz positions of each stick. Estimating
the actual position of the sticks is then as straightforward as
a simple averaging scheme overm samples.

Since this is adrum it seems natural that we would want
to detect when the foam surface has been hit. In a previous
paper[8] it was proposed that an FIR filter with 2048 taps be
used to smooth the signal, and then a simple first derivative
peak picker be used to identify the extremities of the signal.

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

x 10
4

−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−7

trigger

minimum

Samples

S
ig

na
l A

m
pl

itu
de

Position
Velocity

threshold 

Fig. 3. Position and Velocity Signals of a Radio Drum Hit

Although the system worked well in theory, the 2048 tap
FIR introduced an unacceptably large latency of 23.2ms at
a sampling rate of 44.1kHz.

We present in this paper a novel technique inspired by
work in radar pulse detection [9]. Figure 3 shows the signal
corresponding to a drum hit and its first derivative on the
same graph with their amplitudes scaled to the same range to
facilitate comparison. The crucial idea is that the downward
peak of the first derivative happensbeforethat of the filtered
gesture signal; by tuning our algorithms to locate this point
in the signal instead of the later ”real” peak we gain on
average more than 6.8ms in our battle against latency. In fact,
we suspect that this extrema of the first derivative is a more
appropriate point to choose to trigger sound synthesis, since
it likely represents the point of first contact with the surface
of the drum.

We first smooth the signal with 256-points of a matched
filter tuned to the expected shape of a hit, after which we
subtract successive samples to determine the velocity signalv.
We use the first derivative instead of a ratio (see [9]) because
of the derivative’s preferable signal-to-noise characteristics
in the drum’s range of signals, and regain the amplitude-
independency with a variable trigger threshold: when a min-
imum vmin is encountered inv the trigger t = rtvmin is
set using a factor0 ≤ rt ≤ 1. When the stick slows down
enough for the velocity to increase abovet the algorithm
communicates ahit event to the synthesis engine. Setting
the ratio factorrt < 1 helps avoid false alarms due to the
inevitable small noise fluctuations inv, which has twice the
variance of our position signalz. A value of rt = 0.9 was
used in Figure 3.

After a hit has been output by the algorithm, a new trigger
will not be set untilv > 0 - ie, the stick must move upwards
before another hit will be recorded. Furthermore, a trigger
point will not be set unlessv has at some point in the
descent reached a threshold levelvThreshold which we set
significantly above the noise floor of the stationary velocity
signal. Finally, the estimated position of the stick must be
below a threshold level at the surface of the drum to avoid
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Fig. 4. Filtered Signal With Detected Hits

triggering on a reversal of direction in mid-air. A pseudocode
listing of the peak detection algorithm follows:

for each sample z(n)
v(n)=z(n)-z(n-1)
a(n)=v(n)-v(n-1)
if (v(n)>0)

vHasGoneUp=1
elseif ((v(n)<vThreshold)&&(vHasGoneUp==1))

vFast=1
elseif (((a(n)>0)&&(a(n-1)<=0))&&(vFast==1))

t=v(n)*rt
elseif ((t!=0)&&(v(n)>t)&&(v(n)<0))

if (z(n)<physicalThreshold)
communicate a hit event
vFast=0, vHasGoneUp=0, t=0

Figure 4, a plot of the detected hits over the filtered gesture
signal of a drum roll of decaying magnitude, makes it clear
that the sensitivity of the algorithm is outstanding. Just as
important, the latency is very close to being acceptable: the
algorithm presented here introduces a further 128+1 sample
delay from the matched filter and the differentiation, which
when added to the 8.5ms of input and IIR delay makes a
total of 11.4ms. However we can consider our derivative
analysis as saving us at least 6.8ms from detecting the peaks
of the position signal. The other useful parameters of the
hit - the force andx, y positions - are captured when the
trigger is set and sent to the synthesis algorithm once a hit
has been triggered. Future work may include experimenting
with other interesting musical analyses of the signal, such as
detecting ”hits” in mid-air, finally turningair drumming into
the practical art form it deserves to be.

V. CONCLUSIONS

Figure 5 shows the Max/MSP/Jitter patch that acts as
console for one stick of the radio drum, thex, y andz signals
waiting to be used in an artistic way. The choice of which
of the thousands of synthesis algorithms to drive with these
control signals is certainly in the domain of the musician,
but our work begs the question: where does the instrument

Fig. 5. Max/MSP/Jitter Radio Drum Console

design end and the art begin? It stands to reason that as deep,
expressive interfaces develop, the digital processes that shape
the control signals will be as important as those that generate
the sounds. Future work ought to move towards a generalized
set of powerful, high-level signal processing abstractions that
make it convenient for the musician to experiment with the
new control parameters available to him.

Finally, it is worth pointing out that a system resolved,
reliable and flexible enough for a professional musician will
certainly find use in all manner of difficult interface problems.
Future work in assistive technologies will help us to under-
stand what characteristics of an interface are important, and
how to strike a balance between a system that’s intuitive yet
rich in control possibilities.
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