ELEC454 — Microwave Engineering Spring 2006 Professor: Dr. Wolfgang J.R. Hoefer

Course Objectives

After completing the course and laboratory, students should be able to do the following:

- 1 Analyze microwave components and circuits in terms of scattering parameters.
- 2 Determine the electrical characteristics of waveguides and transmission lines through electromagnetic field analysis.
- 3 Design microwave amplifiers and oscillators based on stability, bandwidth, power gain and noise figure criteria.
- 4 Generate layouts and measure the performance of such components.

Lecture 1: Objectives

- 1.1 Get acquainted Personal, Environment and Process.
- 1.2 Technicalities Syllabus, Laboratory and Marking.
- 1.3 General Introduction Course Context, Relevance and Applications.

Lecture 2: Objectives

- 2.1 Review Wave Propagation on
 - 2.1.1 Transmission Lines (TLs)
 - 2.1.2 Equations; Definitions; Process
- 2.2 Review Field Analysis of Transmission Lines2.2.1 Geometry -> Fields -> Electrical Parameters

Lecture 3: Objectives

- 3.1 Review Termination of Transmission Lines, Reflection Coefficient; Standing Waves and Matching
- 3.2 Review Foundations of Smith Chart, Conformal Mapping between Complex Impedance and Complex Reflection Coefficient.

Lecture 4: Objectives

- 4.1 Review Foundations of Smith Chart (continued)
 - 4.1.1 Impedance and Admittance Representation
 - 4.1.2 Impedance Transformation

Lecture 5: Objectives

- 5.1 Review Foundations of Smith Chart (continued) 5.1.1 Impedance-Admittance Conversion
- 5.2 Introduce Impedance Matching
 - 5.2.1 Stub Impedances, Series Matching
 - 5.2.2 Impedance-Admittance Conversion
 - 5.2.3 Stub Admittances and Shunt Matching
 - 5.2.4 Quarter Wave Transformers

Lecture 6: Objectives

- 6.1 Review Scattering Parameters
 - 6.1.1 Definition of Power Waves
 - 6.1.2 Definition of Scattering Parameters
- 6.2 Properties of Scattering Parameters
 - 6.2.1 Passivity
 - 6.2.2 Reciprocity
 - 6.2.3 Losslessness
 - 6.2.4 Extension of Reference Planes
 - 6.2.5 Measurement of S-Parameters
 - 6.2.6 Important Example S_{11} of 2–Port with Load

Lecture 7: Objectives

- 7.1 Gain Definitions for Two-Ports
 - 7.1.1 Power Gain
 - 7.1.2 Available Gain
 - 7.1.3 Transducer Power Gain

Lecture 8: Objectives

- 8.1 Design for Transducer Power Gain
 - 8.1.1 General Amplifier Configuration
 - 8.1.2 Bilateral and Unilateral Gain Formulas

- 8.2 Stability of Amplifiers
 - 8.2.1 Conditional and Unconditional Stability
 - 8.2.2 Stability Circles
 - 8.2.3 Examples of Stability Verification.

Lecture 9: Objectives

- 9.1 Constant Gain Circles
 - 9.1.1 Formulas for Constant Gain
 - 9.1.2 Interpretation for Design
- 9.2 Constant Noise Figure Circles
 - 9.2.1 Sources of Noise in Amplifiers
 - 9.2.2 Definition of Noise Figure
 - 9.2.3 Formulas for Constant Noise Figure

Lecture 10: Objectives

- 10.1 Design for Maximum Gain
 - 10.1.1 Condition for Conjugate Matching
 - 10.1.2 Matching Network Design
- 10.2 Unilateral Figure of Merit
 - 10.2.1 Definition
 - 10.2.2 Error Margin for Unilateral Assumption